Oscillation criteria of second-order half-linear dynamic equations on time scales

In this paper, by using the Riccati transformation technique, chain rule and inequality A λ - λ AB λ - 1 + ( λ - 1 ) B λ ⩾ 0 , λ > 1 , where A and B are positive constants, we will establish some oscillation criteria for the second-order half-linear dynamic equation ( p ( t ) ( x Δ ( t ) ) γ ) Δ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2005-05, Vol.177 (2), p.375-387
1. Verfasser: Saker, S.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 387
container_issue 2
container_start_page 375
container_title Journal of computational and applied mathematics
container_volume 177
creator Saker, S.H.
description In this paper, by using the Riccati transformation technique, chain rule and inequality A λ - λ AB λ - 1 + ( λ - 1 ) B λ ⩾ 0 , λ > 1 , where A and B are positive constants, we will establish some oscillation criteria for the second-order half-linear dynamic equation ( p ( t ) ( x Δ ( t ) ) γ ) Δ + q ( t ) x γ ( t ) = 0 , t ∈ [ a , b ] on time scales, where γ > 1 is an odd positive integer. Our results not only unify the oscillation of half-linear differential and half-linear difference equations but can be applied on different types of time scales and improve some well-known results in the difference equation case. Some examples are considered here to illustrate our main results.
doi_str_mv 10.1016/j.cam.2004.09.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28735857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042704004340</els_id><sourcerecordid>28735857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-55174f245645b8e105b21d357531f43565ade669720e92604aeb9ecd96f65adb3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsFZ_gLdc9JY4m-xHFk9S_IJCEfS8bDYT3JKPdjcV-u_d2II38TSHed53mIeQawoZBSru1pk1XZYDsAxUBnl5Qma0lCqlUpanZAaFlCmwXJ6TixDWACAUZTPytgrWta0Z3dAn1rsRvTPJ0CQB7dDX6eBr9MmnaZu0dT0an9T73nTOJrjd_aRCEpOj6zAJ1rQYLslZY9qAV8c5Jx9Pj--Ll3S5en5dPCxTW5RqTDmnkjU544LxqkQKvMppXXDJC9qwggtuahRCyRxQ5QKYwUqhrZVoplVVzMntoXfjh-0Ow6g7FyzGX3ocdkHnpSx4yeU_QEEFp2UE6QG0fgjBY6M33nXG7zUFPVnWax0t68myBqWj5Zi5OZab6f3Gm9668BsUnHNgLHL3Bw6jki-HXkfv2FusnUc76npwf1z5BkxikXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28616518</pqid></control><display><type>article</type><title>Oscillation criteria of second-order half-linear dynamic equations on time scales</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Saker, S.H.</creator><creatorcontrib>Saker, S.H.</creatorcontrib><description>In this paper, by using the Riccati transformation technique, chain rule and inequality A λ - λ AB λ - 1 + ( λ - 1 ) B λ ⩾ 0 , λ &gt; 1 , where A and B are positive constants, we will establish some oscillation criteria for the second-order half-linear dynamic equation ( p ( t ) ( x Δ ( t ) ) γ ) Δ + q ( t ) x γ ( t ) = 0 , t ∈ [ a , b ] on time scales, where γ &gt; 1 is an odd positive integer. Our results not only unify the oscillation of half-linear differential and half-linear difference equations but can be applied on different types of time scales and improve some well-known results in the difference equation case. Some examples are considered here to illustrate our main results.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2004.09.028</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Finite differences and functional equations ; Mathematical analysis ; Mathematics ; Ordinary differential equations ; Oscillation ; Sciences and techniques of general use ; Second-order half-linear dynamic equations ; Time scale</subject><ispartof>Journal of computational and applied mathematics, 2005-05, Vol.177 (2), p.375-387</ispartof><rights>2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-55174f245645b8e105b21d357531f43565ade669720e92604aeb9ecd96f65adb3</citedby><cites>FETCH-LOGICAL-c389t-55174f245645b8e105b21d357531f43565ade669720e92604aeb9ecd96f65adb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042704004340$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16555044$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Saker, S.H.</creatorcontrib><title>Oscillation criteria of second-order half-linear dynamic equations on time scales</title><title>Journal of computational and applied mathematics</title><description>In this paper, by using the Riccati transformation technique, chain rule and inequality A λ - λ AB λ - 1 + ( λ - 1 ) B λ ⩾ 0 , λ &gt; 1 , where A and B are positive constants, we will establish some oscillation criteria for the second-order half-linear dynamic equation ( p ( t ) ( x Δ ( t ) ) γ ) Δ + q ( t ) x γ ( t ) = 0 , t ∈ [ a , b ] on time scales, where γ &gt; 1 is an odd positive integer. Our results not only unify the oscillation of half-linear differential and half-linear difference equations but can be applied on different types of time scales and improve some well-known results in the difference equation case. Some examples are considered here to illustrate our main results.</description><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Ordinary differential equations</subject><subject>Oscillation</subject><subject>Sciences and techniques of general use</subject><subject>Second-order half-linear dynamic equations</subject><subject>Time scale</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRsFZ_gLdc9JY4m-xHFk9S_IJCEfS8bDYT3JKPdjcV-u_d2II38TSHed53mIeQawoZBSru1pk1XZYDsAxUBnl5Qma0lCqlUpanZAaFlCmwXJ6TixDWACAUZTPytgrWta0Z3dAn1rsRvTPJ0CQB7dDX6eBr9MmnaZu0dT0an9T73nTOJrjd_aRCEpOj6zAJ1rQYLslZY9qAV8c5Jx9Pj--Ll3S5en5dPCxTW5RqTDmnkjU544LxqkQKvMppXXDJC9qwggtuahRCyRxQ5QKYwUqhrZVoplVVzMntoXfjh-0Ow6g7FyzGX3ocdkHnpSx4yeU_QEEFp2UE6QG0fgjBY6M33nXG7zUFPVnWax0t68myBqWj5Zi5OZab6f3Gm9668BsUnHNgLHL3Bw6jki-HXkfv2FusnUc76npwf1z5BkxikXQ</recordid><startdate>20050515</startdate><enddate>20050515</enddate><creator>Saker, S.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>H8D</scope></search><sort><creationdate>20050515</creationdate><title>Oscillation criteria of second-order half-linear dynamic equations on time scales</title><author>Saker, S.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-55174f245645b8e105b21d357531f43565ade669720e92604aeb9ecd96f65adb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Ordinary differential equations</topic><topic>Oscillation</topic><topic>Sciences and techniques of general use</topic><topic>Second-order half-linear dynamic equations</topic><topic>Time scale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saker, S.H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saker, S.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillation criteria of second-order half-linear dynamic equations on time scales</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2005-05-15</date><risdate>2005</risdate><volume>177</volume><issue>2</issue><spage>375</spage><epage>387</epage><pages>375-387</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>In this paper, by using the Riccati transformation technique, chain rule and inequality A λ - λ AB λ - 1 + ( λ - 1 ) B λ ⩾ 0 , λ &gt; 1 , where A and B are positive constants, we will establish some oscillation criteria for the second-order half-linear dynamic equation ( p ( t ) ( x Δ ( t ) ) γ ) Δ + q ( t ) x γ ( t ) = 0 , t ∈ [ a , b ] on time scales, where γ &gt; 1 is an odd positive integer. Our results not only unify the oscillation of half-linear differential and half-linear difference equations but can be applied on different types of time scales and improve some well-known results in the difference equation case. Some examples are considered here to illustrate our main results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2004.09.028</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2005-05, Vol.177 (2), p.375-387
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_28735857
source ScienceDirect Journals (5 years ago - present); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Exact sciences and technology
Finite differences and functional equations
Mathematical analysis
Mathematics
Ordinary differential equations
Oscillation
Sciences and techniques of general use
Second-order half-linear dynamic equations
Time scale
title Oscillation criteria of second-order half-linear dynamic equations on time scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillation%20criteria%20of%20second-order%20half-linear%20dynamic%20equations%20on%20time%20scales&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Saker,%20S.H.&rft.date=2005-05-15&rft.volume=177&rft.issue=2&rft.spage=375&rft.epage=387&rft.pages=375-387&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2004.09.028&rft_dat=%3Cproquest_cross%3E28735857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28616518&rft_id=info:pmid/&rft_els_id=S0377042704004340&rfr_iscdi=true