Oscillation criteria of second-order half-linear dynamic equations on time scales

In this paper, by using the Riccati transformation technique, chain rule and inequality A λ - λ AB λ - 1 + ( λ - 1 ) B λ ⩾ 0 , λ > 1 , where A and B are positive constants, we will establish some oscillation criteria for the second-order half-linear dynamic equation ( p ( t ) ( x Δ ( t ) ) γ ) Δ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2005-05, Vol.177 (2), p.375-387
1. Verfasser: Saker, S.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, by using the Riccati transformation technique, chain rule and inequality A λ - λ AB λ - 1 + ( λ - 1 ) B λ ⩾ 0 , λ > 1 , where A and B are positive constants, we will establish some oscillation criteria for the second-order half-linear dynamic equation ( p ( t ) ( x Δ ( t ) ) γ ) Δ + q ( t ) x γ ( t ) = 0 , t ∈ [ a , b ] on time scales, where γ > 1 is an odd positive integer. Our results not only unify the oscillation of half-linear differential and half-linear difference equations but can be applied on different types of time scales and improve some well-known results in the difference equation case. Some examples are considered here to illustrate our main results.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2004.09.028