Subset selection in multiple linear regression: a new mathematical programming approach

A new mathematical programming model is proposed to address the subset selection problem in multiple linear regression where the objective is to select a minimal subset of predictor variables without sacrificing any explanatory power. A parametric solution of this model yields a number of efficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering 2005-08, Vol.49 (1), p.155-167
Hauptverfasser: Eksioglu, Burak, Demirer, Riza, Capar, Ismail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new mathematical programming model is proposed to address the subset selection problem in multiple linear regression where the objective is to select a minimal subset of predictor variables without sacrificing any explanatory power. A parametric solution of this model yields a number of efficient subsets. To obtain this solution, an optimal or one of two heuristic algorithms is repeatedly used. The subsets generated are compared to ones generated by several standard procedures. The results suggest that the new approach finds subsets that compare favorably against the standard procedures in terms of the generally accepted measure: adjusted R 2.
ISSN:0360-8352
1879-0550
DOI:10.1016/j.cie.2005.03.004