‘Green’ composites Part 1: Characterization of flax fabric and glutaraldehyde modified soy protein concentrate composites

Fully biodegradable, environment friendly ‘green’ composites were prepared using glutaraldehyde (GA) modified soy protein concentrate (MSPC-G) and flax fabric. Soy protein concentrate (SPC) polymer has low tensile properties, poor moisture resistance and is brittle. SPC polymer with 15% glycerin, as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2005-12, Vol.40 (23), p.6263-6273
Hauptverfasser: Chabba, Shitij, Netravali, Anil N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fully biodegradable, environment friendly ‘green’ composites were prepared using glutaraldehyde (GA) modified soy protein concentrate (MSPC-G) and flax fabric. Soy protein concentrate (SPC) polymer has low tensile properties, poor moisture resistance and is brittle. SPC polymer with 15% glycerin, as an external plasticizer, exhibited fracture stress and Young's modulus of 17 and 368 MPa, respectively. SPC polymer was cross-linked with GA to increase its tensile properties and improve its processability as a resin to manufacture flax fabric-reinforced composites. GA reacts with the free amine groups in SPC to form crosslinks. MSPC-G showed 20% increase in fracture stress and 35% increase in Young's modulus as well as improved moisture resistance compared to SPC. Besides the mechanical properties, MSPC-G was also characterized for its thermal stability and dynamic mechanical properties.Composite laminates, approximately 1 mm thick, were made using flax fabric and MSPC-G polymer. Composite specimens were prepared with two different orientations, namely, 0° or 90°. The laminates exhibited a Young's modulus of 1.01 and 1.26 GPa in the longitudinal and transverse directions, respectively. The experimental values were compared with the theoretical predictions using pcGINA© software and showed good agreement. The composite specimens also showed good adhesion between flax fabric and MSPC-G resin.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-005-3142-x