Worst-case quadratic loss bounds for prediction using linear functions and gradient descent

Studies the performance of gradient descent (GD) when applied to the problem of online linear prediction in arbitrary inner product spaces. We prove worst-case bounds on the sum of the squared prediction errors under various assumptions concerning the amount of a priori information about the sequenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks 1996-05, Vol.7 (3), p.604-619
Hauptverfasser: Cesa-Bianchi, N., Long, P.M., Warmuth, M.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies the performance of gradient descent (GD) when applied to the problem of online linear prediction in arbitrary inner product spaces. We prove worst-case bounds on the sum of the squared prediction errors under various assumptions concerning the amount of a priori information about the sequence to predict. The algorithms we use are variants and extensions of online GD. Whereas our algorithms always predict using linear functions as hypotheses, none of our results requires the data to be linearly related. In fact, the bounds proved on the total prediction loss are typically expressed as a function of the total loss of the best fixed linear predictor with bounded norm. All the upper bounds are tight to within constants. Matching lower bounds are provided in some cases. Finally, we apply our results to the problem of online prediction for classes of smooth functions.
ISSN:1045-9227
1941-0093
DOI:10.1109/72.501719