Iterative methods for solving the Gabor expansion: considerations of convergence
J.G. Daugman's (1988) neural network solution to the Gabor expansion of an image is reformulated as a steepest descent implementation. Nonlinear optimization theory is then applied to select an appropriate convergence factor. Two quasi-Newton-based nonlinear optimization techniques are applied...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 1992-04, Vol.1 (2), p.243-244 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | J.G. Daugman's (1988) neural network solution to the Gabor expansion of an image is reformulated as a steepest descent implementation. Nonlinear optimization theory is then applied to select an appropriate convergence factor. Two quasi-Newton-based nonlinear optimization techniques are applied to improve the convergence for certain types of lattice.< > |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/83.136600 |