VIENNA rectifier II-a novel single-stage high-frequency isolated three-phase PWM rectifier system

Based on an analysis of basic realization possibilities, the structure of the power circuit of a new single-stage three-phase boost-type pulsewidth modulated (PWM) rectifier system (VIENNA Rectifier II) is developed. This system has continuous sinusoidal time behavior of the input currents and high-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 1999-08, Vol.46 (4), p.674-691
Hauptverfasser: Kolar, J.W., Drofenik, U., Zach, F.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on an analysis of basic realization possibilities, the structure of the power circuit of a new single-stage three-phase boost-type pulsewidth modulated (PWM) rectifier system (VIENNA Rectifier II) is developed. This system has continuous sinusoidal time behavior of the input currents and high-frequency isolation of the output voltage, which is controlled in a highly dynamic manner. As compared to a conventional two-stage realization, this system has substantially lower complexity and allows the realization of several isolated output circuits with minimum effort. The basic function of the new PWM rectifier system is described based on the conduction states occurring within a pulse period. Furthermore, a straightforward space- vector-oriented method for the system control is proposed which guarantees a symmetric magnetization of the transformer. Also, it makes possible a sinusoidal control of the mains phase currents in phase with the associated phase voltages. By digital simulation, the theoretical considerations are verified and the stresses on the power semiconductors of the new converter system are determined. Finally, results of an experimental analysis of a 2.5-kW laboratory prototype of the system are given, and the direct startup and the short-circuit protection of the converter are discussed. Also, the advantages and disadvantages of the new converter system are compiled in the form of an overview.
ISSN:0278-0046
1557-9948
DOI:10.1109/41.778214