Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells

Monolithic perovskite/silicon tandem solar cells are of great appeal as they promise high power conversion efficiencies (PCEs) at affordable cost. In state-of-the-art tandems, the perovskite top cell is electrically coupled to a silicon heterojunction bottom cell by means of a self-assembled monolay...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2023-11, Vol.623 (7988), p.732-738
Hauptverfasser: Aydin, Erkan, Ugur, Esma, Yildirim, Bumin K., Allen, Thomas G., Dally, Pia, Razzaq, Arsalan, Cao, Fangfang, Xu, Lujia, Vishal, Badri, Yazmaciyan, Aren, Said, Ahmed A., Zhumagali, Shynggys, Azmi, Randi, Babics, Maxime, Fell, Andreas, Xiao, Chuanxiao, De Wolf, Stefaan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monolithic perovskite/silicon tandem solar cells are of great appeal as they promise high power conversion efficiencies (PCEs) at affordable cost. In state-of-the-art tandems, the perovskite top cell is electrically coupled to a silicon heterojunction bottom cell by means of a self-assembled monolayer (SAM), anchored on a transparent conductive oxide (TCO), which enables efficient charge transfer between the subcells 1 – 3 . Yet reproducible, high-performance tandem solar cells require energetically homogeneous SAM coverage, which remains challenging, especially on textured silicon bottom cells. Here, we resolve this issue by using ultrathin (5-nm) amorphous indium zinc oxide (IZO) as the interconnecting TCO, exploiting its high surface-potential homogeneity resulting from the absence of crystal grains and higher density of SAM anchoring sites when compared with commonly used crystalline TCOs. Combined with optical enhancements through equally thin IZO rear electrodes and improved front contact stacks, an independently certified PCE of 32.5% was obtained, which ranks among the highest for perovskite/silicon tandems. Our ultrathin transparent contact approach reduces indium consumption by approximately 80%, which is of importance to sustainable photovoltaics manufacturing 4 . An independently certified power conversion efficiency of 32.5% for perovskite/silicon tandem solar cells is achieved through improved charge transfer at the amorphous indium zinc oxide interconnecting layer and reduced optical losses at the front and rear electrodes.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-023-06667-4