A pleiotropic–epistatic entangelement model of drug response

•Drug response involves multifaceted features, mediated by genes.•Each feature is pleiotropically linked with another.•We frame a pleiotropic–epistatic entanglement model for drug response.•This model provides a generic tool to chart pharmacogenetic architecture. Because drug response is multifactor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug discovery today 2023-11, Vol.28 (11), p.103790-103790, Article 103790
Hauptverfasser: Wang, Yu, Sang, Mengmeng, Feng, Li, Gragnoli, Claudia, Griffin, Christopher, Wu, Rongling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Drug response involves multifaceted features, mediated by genes.•Each feature is pleiotropically linked with another.•We frame a pleiotropic–epistatic entanglement model for drug response.•This model provides a generic tool to chart pharmacogenetic architecture. Because drug response is multifactorial, graph models are uniquely powerful for comprehending its genetic architecture. We deconstruct drug response into many different and interdependent sub-traits, with each sub-trait controlled by multiple genes that act and interact in a complicated manner. The outcome of drug response is the consequence of multileveled intertwined interactions between pleiotropic effects and epistatic effects. Here, we propose a general statistical physics framework to chart the 3D geometric network that codes how epistasis pleiotropically influences a complete set of sub-traits to shape body–drug interactions. This model can dissect the topological architecture of epistatically induced pleiotropic networks (EiPN) and pleiotropically influenced epistatic networks (PiEN). We analyze and interpret the practical implications of the pleiotropic–epistatic entanglement model for pharmacogenomic studies.
ISSN:1359-6446
1878-5832
DOI:10.1016/j.drudis.2023.103790