Improvement of the tribological behavior of ultra-high-molecular-weight polyethylene by incorporation of poly (phenyl p-hydroxyzoate)

Ultra‐high‐molecular‐weight polyethylene/poly (phenyl p‐hydroxyzoate) composites (coded as UHMWPE/PPHZ) were prepared by compression molding. The effects of the poly (phenyl p‐hydroxyzoate) on the tribological properties of the UHMWPE/PPHZ composites were investigated, based on the evaluations of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2005-06, Vol.96 (6), p.2336-2343
Hauptverfasser: Zhou, Jiansong, Yan, Fengyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultra‐high‐molecular‐weight polyethylene/poly (phenyl p‐hydroxyzoate) composites (coded as UHMWPE/PPHZ) were prepared by compression molding. The effects of the poly (phenyl p‐hydroxyzoate) on the tribological properties of the UHMWPE/PPHZ composites were investigated, based on the evaluations of the tribological properties of the composites with various compositions and the examinations of the worn steel surfaces and composites structures by means of scanning electron microscopy and transmission electron microscopy. It was found that the incorporation of the PPHZ led to a significant decrease in the wear rate of the composites. The composites with the volume fraction of the PPHZ particulates within 45% ∼ 75% showed the best wear resistance. The friction coefficient of the UHMWPE/PPHZ composites decreased with increasing load and sliding velocity, while the wear rates increased with increasing load. This was attributed to the enhanced softening and plastic deformation of the composites at elevated load or sliding velocity. The UHMWPE/PPHZ composites of different compositions had differences in the microstructures and the transfer film characteristics on the counterpart steel surface as well. This accounted for their different friction and wear behaviors. The transfer film of the UHMWPE/PPHZ composites appeared to be thinner and more coherent, which was largely responsible for their better wear resistance of t composite than the UHMWPE matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2336–2343, 2005
ISSN:0021-8995
1097-4628
DOI:10.1002/app.21534