Dietary melatonin positively impacts the immune system of crayfish, Cherax destructor, as revealed by comparative proteomics analysis

Melatonin, an indoleamine with various biological activities, is being used increasingly in the aquaculture industry for its broad immune effects. Cherax destructor is an emerging economically cultured crayfish that faces many problems in the breeding process. Previous work found that dietary melato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fish & shellfish immunology 2023-11, Vol.142, p.109122-109122, Article 109122
Hauptverfasser: Yang, Ying, Zhu, Bihong, Xu, Wenyue, Tian, Jiangtao, Du, Xinglin, Ye, Yucong, Huang, Yizhou, Jiang, Qichen, Li, Yiming, Zhao, Yunlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Melatonin, an indoleamine with various biological activities, is being used increasingly in the aquaculture industry for its broad immune effects. Cherax destructor is an emerging economically cultured crayfish that faces many problems in the breeding process. Previous work found that dietary melatonin has positive effects on the growth and immunity of C. destructor, but the specific mechanism involved remained unclear. In this study, proteomics was used to determine the mechanism of action of melatonin in C. destructor. Results showed that dietary melatonin resulted in decreased levels of hydrogen peroxide, alanine aminotransferase, and aspartate aminotransferase, but increased levels of glutathione peroxidase, acid phosphatase, and glutathione S-transferases. In total, 608 proteins were differentially expressed (418 upregulated and 190 downregulated), and were enriched in three main categories: innate immunity (B cell receptor signaling pathway and natural killer cell-mediated cytotoxicity), glucose metabolism (pentose phosphate pathway, pentose and glucuronate interconversions, and propionate metabolism), and amino acid metabolism (valine, leucine, and isoleucine degradation, and cysteine and methionine metabolism). In addition, dietary melatonin was also involved in the regulation of the mTOR signaling pathway, and upregulated the expression of genes encoding key factors, such as Ras-related GTP-binding protein A/B, eukaryotic initiation factor 4E, eukaryotic initiation factor 4E-binding protein, and p70 ribosomal S6 kinase. Overall, this study demonstrates the role of melatonin in the physiological regulation of C. destructor, laying the foundation for the development of melatonin as a feed additive in the aquaculture of this species. •Dietary melatonin maintains the health of hepatopancreas.•DEPs after dietary melatonin are mainly related to the immune system, glucose metabolism, and amino acid metabolism.•Melatonin regulates natural killer cell-mediated cytotoxicity and B cell receptor signaling pathways.
ISSN:1050-4648
1095-9947
DOI:10.1016/j.fsi.2023.109122