A Novel Port to Facilitate Magnetic Hyperthermia Therapy for Glioma

High-grade gliomas (HGG) are the most common primary brain malignancy and continue to be associated with a dismal prognosis (median survival rate of 15-18 months) with standard of care therapy. Magnetic hyperthermia therapy (MHT) is an emerging intervention that leverages the ferromagnetic propertie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanical engineering 2024-01, Vol.146 (1), p.1-22
Hauptverfasser: Rodriguez, Benjamin, Campbell, Peter, Borrello, Joseph, Odland, Ian, Hrabarchuk, Eugene, Young, Tirone, Sharma, Anirudh, Schupper, Alexander, Rapoport, Benjamin I., Ivkov, Robert, Hadjipanayis, Constantinos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-grade gliomas (HGG) are the most common primary brain malignancy and continue to be associated with a dismal prognosis (median survival rate of 15-18 months) with standard of care therapy. Magnetic hyperthermia therapy (MHT) is an emerging intervention that leverages the ferromagnetic properties of magnetic iron-oxide nanoparticles (MIONPs) to target cancer cells that are otherwise left behind after resection. We report a novel port device to facilitate localization, delivery, and temperature measurement of MIONPs within a target lesion for MHT therapy. We conducted an in-depth literature and intellectual property review to define specifications of the conceived port device. After setting the design parameters, a thorough collaboration with neurological surgeons guided the iterative modeling process. A prototype was developed using Fusion 360 (Autodesk, San Rafael, CA) and printed on a Form 3 printer (Formlabs, Medford, MA) in Durable resin. The prototype was then tested in a phantom skull printed on a ProJet 660Pro 3D printer (3D Systems, Rock Hill, SC) and a brain model based on mechanical and electrochemical properties of native brain tissue. This phantom underwent MHT heating tests using an AMF sequence based on current MHT workflow. Successful localization, delivery, and temperature measurement were demonstrated. The purpose of this study was twofold: firstly, to create and validate the procedural framework for a novel device, providing the groundwork for an upcoming comprehensive animal trial, and secondly, to elucidate a cooperative approach between engineers and clinicians that propels advancements in medical innovation.
ISSN:0148-0731
1528-8951
DOI:10.1115/1.4063556