Iodotrimethylsilane as a Reactive Ligand for Surface Etching and Passivation of Perovskite Nanocrystals toward Efficient Pure‐red to Deep‐red LEDs
Resurfacing perovskite nanocrystals (NCs) with tight‐binding and conductive ligands to resolve the dynamic ligands—surface interaction is the fundamental issue for their applications in perovskite light‐emitting diodes (PeLEDs). Although various types of surface ligands have been proposed, these lig...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-11, Vol.62 (46), p.e202311089-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Resurfacing perovskite nanocrystals (NCs) with tight‐binding and conductive ligands to resolve the dynamic ligands—surface interaction is the fundamental issue for their applications in perovskite light‐emitting diodes (PeLEDs). Although various types of surface ligands have been proposed, these ligands either exhibit weak Lewis acid/base interactions or need high polar solvents for dissolution and passivation, resulting in a compromise in the efficiency and stability of PeLEDs. Herein, we report a chemically reactive agent (Iodotrimethylsilane, TMIS) to address the trade‐off among conductivity, solubility and passivation using all‐inorganic CsPbI3 NCs. The liquid TMIS ensures good solubility in non‐polar solvents and reacts with oleate ligands and produces in situ HI for surface etching and passivation, enabling strong‐binding ligands on the NCs surface. We report, as a result, red PeLEDs with an external quantum efficiency (EQE) of ≈23 %, which is 11.2‐fold higher than the control, and is among the highest CsPbI3 PeLEDs. We further demonstrate the universality of this ligand strategy in the pure bromide system (CsPbBr3), and report EQE of ≈20 % at 640, 652, and 664 nm. This represents the first demonstration of a chemically reactive ligand strategy that applies to different systems and works effectively in red PeLEDs spanning emission from pure‐red to deep‐red.
A solution‐phase ligand exchange strategy is used to resurface perovskite nanocrystal surfaces with a chemically active, short and conductive ligand, Iodotrimethylsilane (TMIS), which also functions as a surface passivant. Excellent conductivity and photostability allowed us to fabricate compact, high‐mobility and trap‐free perovskite NC films with high PLQY (>90%). As a result, we achieve CsPbI3 NC‐based PeLEDs with an EQE of ~23%. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202311089 |