CTRP9 alleviates hypoxia/reoxygenation-induced human placental vascular endothelial cells impairment and mitochondrial dysfunction through activating AMPK/Nrf2 signaling
Pregnancy-induced hypertension (PIH) is associated with significant maternal and fetal mortality. The present study is aimed at exploring the molecular mechanism of C1q/TNF-related protein 9 (CTRP9) in PIH. Human placental vascular endothelial cells (HPVECs) underwent hypoxia/reoxygenation (H/R) to...
Gespeichert in:
Veröffentlicht in: | Tissue & cell 2023-12, Vol.85, p.102217, Article 102217 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pregnancy-induced hypertension (PIH) is associated with significant maternal and fetal mortality. The present study is aimed at exploring the molecular mechanism of C1q/TNF-related protein 9 (CTRP9) in PIH.
Human placental vascular endothelial cells (HPVECs) underwent hypoxia/reoxygenation (H/R) to construct an in vitro PIH cellular model. Cell transfection was conducted to over-express CTRP9. The expression level of CTRP9 was determined by western blot and quantitative real-time PCR. CCK-8, flow cytometry, wound-healing and tube formation assays were conducted to assess cell viability, apoptosis, migration and angiogenesis, respectively. Mitochondrial membrane potential (∆ψm) was evaluated adopting JC-1 staining. Mitochondrial ROS and copy number (mtDNA) were examined using superoxide indicator and real-time PCR, respectively. Then, HPVECs were pre-treated with Compound C (CC), the inhibitor of AMPK, for regulatory mechanism research.
CTRP9 was downregulated in HPVECs exposed to H/R induction. CTRP9 overexpression retards H/R-mediated cell viability loss and apoptosis, impaired migration and angiogenesis of HPVECs. Meanwhile, CTRP9 overexpression alleviates H/R-mediated mitochondrial dysfunction in HPVECs by enhancing mitochondrial ∆ψm, reducing mitochondrial ROS generation and increasing mtDNA copies. In addition, CTRP9 activated AMPK/Nrf2 signaling in H/R-mediated HPVECs, and additional treatment of CC greatly weakened the functional effects of CTRP9 in H/R-mediated HPVECs.
Our results suggested that CTRP9 protected against H/R-mediated HPVECs injuries dependent on AMPK/Nrf2 signaling and could be applied as a potential therapy for PIH.
•CTRP9 alleviates hypoxia/reoxygenation-induced HPVECs impairment and mitochondrial dysfunction.•CTRP9 protected against H/R-mediated HPVECs injuries dependent on AMPK/Nrf2 signaling.•CTRP9 may be a potential therapy for pregnancy-induced hypertension syndrome. |
---|---|
ISSN: | 0040-8166 1532-3072 1532-3072 |
DOI: | 10.1016/j.tice.2023.102217 |