Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma

Microneedles are widely used substrates for various chemical and biological sensing applications utilizing surface-enhanced Raman spectroscopy (SERS), which is indeed a highly sensitive and specific analytical approach. This article reports the fabrication of a nanoparticle (NP)-decorated microneedl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-10, Vol.15 (40), p.46681-46696
Hauptverfasser: Simas, M. Vitoria, Olaniyan, Philomena O., Hati, Sumon, Davis, Gregory A., Anspach, Gavin, Goodpaster, John V., Manicke, Nicholas E., Sardar, Rajesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46696
container_issue 40
container_start_page 46681
container_title ACS applied materials & interfaces
container_volume 15
creator Simas, M. Vitoria
Olaniyan, Philomena O.
Hati, Sumon
Davis, Gregory A.
Anspach, Gavin
Goodpaster, John V.
Manicke, Nicholas E.
Sardar, Rajesh
description Microneedles are widely used substrates for various chemical and biological sensing applications utilizing surface-enhanced Raman spectroscopy (SERS), which is indeed a highly sensitive and specific analytical approach. This article reports the fabrication of a nanoparticle (NP)-decorated microneedle substrate that is both a SERS substrate and a substrate-supported electrospray ionization (ssESI) mass spectrometry (MS) sample ionization platform. Polymeric ligand-functionalized gold nanorods (Au NRs) are adsorbed onto superhydrophobic surface-modified polydimethylsiloxane (PDMS) microneedles through the control of various interfacial interactions. We show that the chain length of the polymer ligands dictates the NR adsorption process. Importantly, assembling Au NRs onto the micrometer-diameter needle tips allows the formation of highly concentrated electromagnetic hot spots, which provide the SERS enhancement factor as high as 1.0 × 106. The micrometer-sized area of the microneedle top and high electromagnetic field enhancement of our system can be loosely compared with tip-enhanced Raman spectroscopy, where the apex of a plasmonic NP-functionalized sharp probe produces high-intensity plasmonic hot spots. Utilizing our NR-decorated microneedle substrates, the synthetic drugs fentanyl and alprazolam are analyzed with a subpicomolar limit of detection. Further analysis of drug-molecule interactions on the NR surface utilizing the Langmuir adsorption model suggests that the higher polarizability of fentanyl allows for a stronger interaction with hydrophilic polymer layers on the NR surface. We further demonstrate the translational aspect of the microneedle substrate for both SERS- and ssESI-MS-based detection of these two potent drugs in 10 drug-of-abuse (DOA) patient plasma samples with minimal preanalysis sample preparation steps. Chemometric analysis for the SERS-based detection shows a very good classification between fentanyl, alprazolam, or a mixture thereof in our selected 10 samples. Most importantly, ssESI-MS analysis also successfully identifies fentanyl or alprazolam in these same 10 DOA plasma samples. We believe that our multimodal detection approach presented herein is a highly versatile detection technology that can be applicable to the detection of any analyte type without performing any complicated sample preparation.
doi_str_mv 10.1021/acsami.3c10174
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870987553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870987553</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-914e2e757a980e37eaead3eafef24bb1646771a20e20a6051df442c06d65ae9f3</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhSMEEqVw5ewjQspiO068OUK7BaSuqFg4RxN7zLpy7GA7h_zM_iO82hZx4TSj0ffejP2q6i2jG0Y5-wAqwWQ3jWKUSfGsumC9EPWWt_z5316Il9WrlO4p7RpO24vq4bDMGI-rjmE-htEqcliiAYVkH7Q1VkG2wZNgyF1w64SR7K2KwSNqh4nsPIynegNj_IfdLy7bKWhwT3b1zh_BK9TkO0zgyWFGlWNIKswrAa_JHlJ6mk6Y41qUY8oRcrE3IZLD6vMRc7nwOi6_yDXmwp72WU8-uRA0uXOQJnhdvTDgEr55rJfVz5vdj6sv9e23z1-vPt7W0FCZ654J5ChbCf2WYiMREHSDYNBwMY6sE52UDDhFTqGjLdNGCK5op7sWsDfNZfXu7DvH8HvBlIfJJoXOgcewpIFvJe23sm2bgm7OaPm5lCKaYY52grgOjA6n7IZzdsNjdkXw_iwo8-E-LNGXl_wP_gP7daIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870987553</pqid></control><display><type>article</type><title>Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma</title><source>ACS Publications</source><creator>Simas, M. Vitoria ; Olaniyan, Philomena O. ; Hati, Sumon ; Davis, Gregory A. ; Anspach, Gavin ; Goodpaster, John V. ; Manicke, Nicholas E. ; Sardar, Rajesh</creator><creatorcontrib>Simas, M. Vitoria ; Olaniyan, Philomena O. ; Hati, Sumon ; Davis, Gregory A. ; Anspach, Gavin ; Goodpaster, John V. ; Manicke, Nicholas E. ; Sardar, Rajesh</creatorcontrib><description>Microneedles are widely used substrates for various chemical and biological sensing applications utilizing surface-enhanced Raman spectroscopy (SERS), which is indeed a highly sensitive and specific analytical approach. This article reports the fabrication of a nanoparticle (NP)-decorated microneedle substrate that is both a SERS substrate and a substrate-supported electrospray ionization (ssESI) mass spectrometry (MS) sample ionization platform. Polymeric ligand-functionalized gold nanorods (Au NRs) are adsorbed onto superhydrophobic surface-modified polydimethylsiloxane (PDMS) microneedles through the control of various interfacial interactions. We show that the chain length of the polymer ligands dictates the NR adsorption process. Importantly, assembling Au NRs onto the micrometer-diameter needle tips allows the formation of highly concentrated electromagnetic hot spots, which provide the SERS enhancement factor as high as 1.0 × 106. The micrometer-sized area of the microneedle top and high electromagnetic field enhancement of our system can be loosely compared with tip-enhanced Raman spectroscopy, where the apex of a plasmonic NP-functionalized sharp probe produces high-intensity plasmonic hot spots. Utilizing our NR-decorated microneedle substrates, the synthetic drugs fentanyl and alprazolam are analyzed with a subpicomolar limit of detection. Further analysis of drug-molecule interactions on the NR surface utilizing the Langmuir adsorption model suggests that the higher polarizability of fentanyl allows for a stronger interaction with hydrophilic polymer layers on the NR surface. We further demonstrate the translational aspect of the microneedle substrate for both SERS- and ssESI-MS-based detection of these two potent drugs in 10 drug-of-abuse (DOA) patient plasma samples with minimal preanalysis sample preparation steps. Chemometric analysis for the SERS-based detection shows a very good classification between fentanyl, alprazolam, or a mixture thereof in our selected 10 samples. Most importantly, ssESI-MS analysis also successfully identifies fentanyl or alprazolam in these same 10 DOA plasma samples. We believe that our multimodal detection approach presented herein is a highly versatile detection technology that can be applicable to the detection of any analyte type without performing any complicated sample preparation.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c10174</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Biological and Medical Applications of Materials and Interfaces</subject><ispartof>ACS applied materials &amp; interfaces, 2023-10, Vol.15 (40), p.46681-46696</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-914e2e757a980e37eaead3eafef24bb1646771a20e20a6051df442c06d65ae9f3</citedby><cites>FETCH-LOGICAL-a307t-914e2e757a980e37eaead3eafef24bb1646771a20e20a6051df442c06d65ae9f3</cites><orcidid>0000-0002-4077-4997 ; 0000-0001-9680-1301 ; 0000-0002-2296-0497 ; 0000-0002-4165-8314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c10174$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c10174$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids></links><search><creatorcontrib>Simas, M. Vitoria</creatorcontrib><creatorcontrib>Olaniyan, Philomena O.</creatorcontrib><creatorcontrib>Hati, Sumon</creatorcontrib><creatorcontrib>Davis, Gregory A.</creatorcontrib><creatorcontrib>Anspach, Gavin</creatorcontrib><creatorcontrib>Goodpaster, John V.</creatorcontrib><creatorcontrib>Manicke, Nicholas E.</creatorcontrib><creatorcontrib>Sardar, Rajesh</creatorcontrib><title>Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Microneedles are widely used substrates for various chemical and biological sensing applications utilizing surface-enhanced Raman spectroscopy (SERS), which is indeed a highly sensitive and specific analytical approach. This article reports the fabrication of a nanoparticle (NP)-decorated microneedle substrate that is both a SERS substrate and a substrate-supported electrospray ionization (ssESI) mass spectrometry (MS) sample ionization platform. Polymeric ligand-functionalized gold nanorods (Au NRs) are adsorbed onto superhydrophobic surface-modified polydimethylsiloxane (PDMS) microneedles through the control of various interfacial interactions. We show that the chain length of the polymer ligands dictates the NR adsorption process. Importantly, assembling Au NRs onto the micrometer-diameter needle tips allows the formation of highly concentrated electromagnetic hot spots, which provide the SERS enhancement factor as high as 1.0 × 106. The micrometer-sized area of the microneedle top and high electromagnetic field enhancement of our system can be loosely compared with tip-enhanced Raman spectroscopy, where the apex of a plasmonic NP-functionalized sharp probe produces high-intensity plasmonic hot spots. Utilizing our NR-decorated microneedle substrates, the synthetic drugs fentanyl and alprazolam are analyzed with a subpicomolar limit of detection. Further analysis of drug-molecule interactions on the NR surface utilizing the Langmuir adsorption model suggests that the higher polarizability of fentanyl allows for a stronger interaction with hydrophilic polymer layers on the NR surface. We further demonstrate the translational aspect of the microneedle substrate for both SERS- and ssESI-MS-based detection of these two potent drugs in 10 drug-of-abuse (DOA) patient plasma samples with minimal preanalysis sample preparation steps. Chemometric analysis for the SERS-based detection shows a very good classification between fentanyl, alprazolam, or a mixture thereof in our selected 10 samples. Most importantly, ssESI-MS analysis also successfully identifies fentanyl or alprazolam in these same 10 DOA plasma samples. We believe that our multimodal detection approach presented herein is a highly versatile detection technology that can be applicable to the detection of any analyte type without performing any complicated sample preparation.</description><subject>Biological and Medical Applications of Materials and Interfaces</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhSMEEqVw5ewjQspiO068OUK7BaSuqFg4RxN7zLpy7GA7h_zM_iO82hZx4TSj0ffejP2q6i2jG0Y5-wAqwWQ3jWKUSfGsumC9EPWWt_z5316Il9WrlO4p7RpO24vq4bDMGI-rjmE-htEqcliiAYVkH7Q1VkG2wZNgyF1w64SR7K2KwSNqh4nsPIynegNj_IfdLy7bKWhwT3b1zh_BK9TkO0zgyWFGlWNIKswrAa_JHlJ6mk6Y41qUY8oRcrE3IZLD6vMRc7nwOi6_yDXmwp72WU8-uRA0uXOQJnhdvTDgEr55rJfVz5vdj6sv9e23z1-vPt7W0FCZ654J5ChbCf2WYiMREHSDYNBwMY6sE52UDDhFTqGjLdNGCK5op7sWsDfNZfXu7DvH8HvBlIfJJoXOgcewpIFvJe23sm2bgm7OaPm5lCKaYY52grgOjA6n7IZzdsNjdkXw_iwo8-E-LNGXl_wP_gP7daIs</recordid><startdate>20231011</startdate><enddate>20231011</enddate><creator>Simas, M. Vitoria</creator><creator>Olaniyan, Philomena O.</creator><creator>Hati, Sumon</creator><creator>Davis, Gregory A.</creator><creator>Anspach, Gavin</creator><creator>Goodpaster, John V.</creator><creator>Manicke, Nicholas E.</creator><creator>Sardar, Rajesh</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4077-4997</orcidid><orcidid>https://orcid.org/0000-0001-9680-1301</orcidid><orcidid>https://orcid.org/0000-0002-2296-0497</orcidid><orcidid>https://orcid.org/0000-0002-4165-8314</orcidid></search><sort><creationdate>20231011</creationdate><title>Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma</title><author>Simas, M. Vitoria ; Olaniyan, Philomena O. ; Hati, Sumon ; Davis, Gregory A. ; Anspach, Gavin ; Goodpaster, John V. ; Manicke, Nicholas E. ; Sardar, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-914e2e757a980e37eaead3eafef24bb1646771a20e20a6051df442c06d65ae9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological and Medical Applications of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simas, M. Vitoria</creatorcontrib><creatorcontrib>Olaniyan, Philomena O.</creatorcontrib><creatorcontrib>Hati, Sumon</creatorcontrib><creatorcontrib>Davis, Gregory A.</creatorcontrib><creatorcontrib>Anspach, Gavin</creatorcontrib><creatorcontrib>Goodpaster, John V.</creatorcontrib><creatorcontrib>Manicke, Nicholas E.</creatorcontrib><creatorcontrib>Sardar, Rajesh</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simas, M. Vitoria</au><au>Olaniyan, Philomena O.</au><au>Hati, Sumon</au><au>Davis, Gregory A.</au><au>Anspach, Gavin</au><au>Goodpaster, John V.</au><au>Manicke, Nicholas E.</au><au>Sardar, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-10-11</date><risdate>2023</risdate><volume>15</volume><issue>40</issue><spage>46681</spage><epage>46696</epage><pages>46681-46696</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Microneedles are widely used substrates for various chemical and biological sensing applications utilizing surface-enhanced Raman spectroscopy (SERS), which is indeed a highly sensitive and specific analytical approach. This article reports the fabrication of a nanoparticle (NP)-decorated microneedle substrate that is both a SERS substrate and a substrate-supported electrospray ionization (ssESI) mass spectrometry (MS) sample ionization platform. Polymeric ligand-functionalized gold nanorods (Au NRs) are adsorbed onto superhydrophobic surface-modified polydimethylsiloxane (PDMS) microneedles through the control of various interfacial interactions. We show that the chain length of the polymer ligands dictates the NR adsorption process. Importantly, assembling Au NRs onto the micrometer-diameter needle tips allows the formation of highly concentrated electromagnetic hot spots, which provide the SERS enhancement factor as high as 1.0 × 106. The micrometer-sized area of the microneedle top and high electromagnetic field enhancement of our system can be loosely compared with tip-enhanced Raman spectroscopy, where the apex of a plasmonic NP-functionalized sharp probe produces high-intensity plasmonic hot spots. Utilizing our NR-decorated microneedle substrates, the synthetic drugs fentanyl and alprazolam are analyzed with a subpicomolar limit of detection. Further analysis of drug-molecule interactions on the NR surface utilizing the Langmuir adsorption model suggests that the higher polarizability of fentanyl allows for a stronger interaction with hydrophilic polymer layers on the NR surface. We further demonstrate the translational aspect of the microneedle substrate for both SERS- and ssESI-MS-based detection of these two potent drugs in 10 drug-of-abuse (DOA) patient plasma samples with minimal preanalysis sample preparation steps. Chemometric analysis for the SERS-based detection shows a very good classification between fentanyl, alprazolam, or a mixture thereof in our selected 10 samples. Most importantly, ssESI-MS analysis also successfully identifies fentanyl or alprazolam in these same 10 DOA plasma samples. We believe that our multimodal detection approach presented herein is a highly versatile detection technology that can be applicable to the detection of any analyte type without performing any complicated sample preparation.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.3c10174</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4077-4997</orcidid><orcidid>https://orcid.org/0000-0001-9680-1301</orcidid><orcidid>https://orcid.org/0000-0002-2296-0497</orcidid><orcidid>https://orcid.org/0000-0002-4165-8314</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-10, Vol.15 (40), p.46681-46696
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2870987553
source ACS Publications
subjects Biological and Medical Applications of Materials and Interfaces
title Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superhydrophobic%20Surface%20Modification%20of%20Polymer%20Microneedles%20Enables%20Fabrication%20of%20Multimodal%20Surface-Enhanced%20Raman%20Spectroscopy%20and%20Mass%20Spectrometry%20Substrates%20for%20Synthetic%20Drug%20Detection%20in%20Blood%20Plasma&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Simas,%20M.%20Vitoria&rft.date=2023-10-11&rft.volume=15&rft.issue=40&rft.spage=46681&rft.epage=46696&rft.pages=46681-46696&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c10174&rft_dat=%3Cproquest_cross%3E2870987553%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870987553&rft_id=info:pmid/&rfr_iscdi=true