Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma
Microneedles are widely used substrates for various chemical and biological sensing applications utilizing surface-enhanced Raman spectroscopy (SERS), which is indeed a highly sensitive and specific analytical approach. This article reports the fabrication of a nanoparticle (NP)-decorated microneedl...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-10, Vol.15 (40), p.46681-46696 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microneedles are widely used substrates for various chemical and biological sensing applications utilizing surface-enhanced Raman spectroscopy (SERS), which is indeed a highly sensitive and specific analytical approach. This article reports the fabrication of a nanoparticle (NP)-decorated microneedle substrate that is both a SERS substrate and a substrate-supported electrospray ionization (ssESI) mass spectrometry (MS) sample ionization platform. Polymeric ligand-functionalized gold nanorods (Au NRs) are adsorbed onto superhydrophobic surface-modified polydimethylsiloxane (PDMS) microneedles through the control of various interfacial interactions. We show that the chain length of the polymer ligands dictates the NR adsorption process. Importantly, assembling Au NRs onto the micrometer-diameter needle tips allows the formation of highly concentrated electromagnetic hot spots, which provide the SERS enhancement factor as high as 1.0 × 106. The micrometer-sized area of the microneedle top and high electromagnetic field enhancement of our system can be loosely compared with tip-enhanced Raman spectroscopy, where the apex of a plasmonic NP-functionalized sharp probe produces high-intensity plasmonic hot spots. Utilizing our NR-decorated microneedle substrates, the synthetic drugs fentanyl and alprazolam are analyzed with a subpicomolar limit of detection. Further analysis of drug-molecule interactions on the NR surface utilizing the Langmuir adsorption model suggests that the higher polarizability of fentanyl allows for a stronger interaction with hydrophilic polymer layers on the NR surface. We further demonstrate the translational aspect of the microneedle substrate for both SERS- and ssESI-MS-based detection of these two potent drugs in 10 drug-of-abuse (DOA) patient plasma samples with minimal preanalysis sample preparation steps. Chemometric analysis for the SERS-based detection shows a very good classification between fentanyl, alprazolam, or a mixture thereof in our selected 10 samples. Most importantly, ssESI-MS analysis also successfully identifies fentanyl or alprazolam in these same 10 DOA plasma samples. We believe that our multimodal detection approach presented herein is a highly versatile detection technology that can be applicable to the detection of any analyte type without performing any complicated sample preparation. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.3c10174 |