Can a modified ketogenic diet be a nutritional strategy for patients with McArdle disease? Results from a randomized, single-blind, placebo-controlled, cross-over study
McArdle disease is caused by myophosphorylase deficiency leading to blocked glycogenolysis in skeletal muscle. Consequently, individuals with McArdle disease have intolerance to physical activity, muscle fatigue, and pain. These symptoms vary according to the availability of alternative fuels for mu...
Gespeichert in:
Veröffentlicht in: | Clinical nutrition (Edinburgh, Scotland) Scotland), 2023-11, Vol.42 (11), p.2124-2137 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | McArdle disease is caused by myophosphorylase deficiency leading to blocked glycogenolysis in skeletal muscle. Consequently, individuals with McArdle disease have intolerance to physical activity, muscle fatigue, and pain. These symptoms vary according to the availability of alternative fuels for muscle contraction. In theory, a modified ketogenic diet (mKD) can provide alternative fuels in the form of ketone bodies and potentially boost fat oxidation.
This randomized, single-blind, placebo-controlled, cross-over study aimed to investigate if a mKD improves exercise capacity in individuals with McArdle disease. Participants were randomized to follow a mKD (75–80% fat, 15% protein, 5–10% carbohydrates) or placebo diet (PD) first for three weeks, followed by a wash-out period, and then the opposite diet. The primary outcome was change in heart rate during constant-load cycling. Secondary outcomes included change in plasma metabolites, perceived exertion, indirect calorimetry measures, maximal exercise capacity, and patient-reported outcomes.
Fifteen out of 20 patients with genetically verified McArdle disease completed all study visits, and 14 were included in the data analyses. We found that the mKD induced a metabolic shift towards increased fat oxidation (∼60% increase), and a 19-fold increase in plasma β-hydroxybutyrate (p |
---|---|
ISSN: | 0261-5614 1532-1983 |
DOI: | 10.1016/j.clnu.2023.09.006 |