Identification of a Novel, Potent, and Orally Bioavailable Guanidine-Based SHP2 Allosteric Inhibitor from Virtual Screening and Rational Structural Optimization for the Treatment of KRAS Mutant Cancers
Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) is a highly attractive therapeutic target for treating Kirsten rat sarcoma viral oncogene (KRAS) mutant cancers. In this work, a series of guanidine-based SHP2 allosteric inhibitors were discovered via virtual screening and ratio...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2023-10, Vol.66 (19), p.13646-13664 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) is a highly attractive therapeutic target for treating Kirsten rat sarcoma viral oncogene (KRAS) mutant cancers. In this work, a series of guanidine-based SHP2 allosteric inhibitors were discovered via virtual screening and rational structural optimization. Notably, lead compound 23 with potent SHP2 inhibitory activity (IC50 = 17.7 nM) effectively inhibited the proliferation, migration, and invasion of MIA PaCa-2 pancreatic cancer cells. Furthermore, compound 23 featured great in vivo pharmacokinetic properties (AUCpo = 4320 nM·h; F = 66.3%) and exhibited significant antitumor efficacy in the MIA PaCa-2 xenograft mouse model. This demonstrates that compound 23 is a potential lead compound for the development of SHP2 allosteric inhibitors to treat KRAS mutant cancers. Moreover, these guanidine-based scaffolds may provide an opportunity to mitigate the potential safety risks of the alkyl amine motif predominately incorporated in current SHP2 allosteric inhibitors. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/acs.jmedchem.3c00992 |