Identification of a Novel, Potent, and Orally Bioavailable Guanidine-Based SHP2 Allosteric Inhibitor from Virtual Screening and Rational Structural Optimization for the Treatment of KRAS Mutant Cancers

Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) is a highly attractive therapeutic target for treating Kirsten rat sarcoma viral oncogene (KRAS) mutant cancers. In this work, a series of guanidine-based SHP2 allosteric inhibitors were discovered via virtual screening and ratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2023-10, Vol.66 (19), p.13646-13664
Hauptverfasser: Hou, Qiangqiang, Jiang, Wenhua, Li, Wenqiang, Huang, Chenyang, Yang, Kexin, Chen, Xiaoyu, Huang, Mengchen, Shu, Chengxia, Luo, Guangmei, Sun, Haopeng, Chu, Qian, Wu, Xiaoxing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) is a highly attractive therapeutic target for treating Kirsten rat sarcoma viral oncogene (KRAS) mutant cancers. In this work, a series of guanidine-based SHP2 allosteric inhibitors were discovered via virtual screening and rational structural optimization. Notably, lead compound 23 with potent SHP2 inhibitory activity (IC50 = 17.7 nM) effectively inhibited the proliferation, migration, and invasion of MIA PaCa-2 pancreatic cancer cells. Furthermore, compound 23 featured great in vivo pharmacokinetic properties (AUCpo = 4320 nM·h; F = 66.3%) and exhibited significant antitumor efficacy in the MIA PaCa-2 xenograft mouse model. This demonstrates that compound 23 is a potential lead compound for the development of SHP2 allosteric inhibitors to treat KRAS mutant cancers. Moreover, these guanidine-based scaffolds may provide an opportunity to mitigate the potential safety risks of the alkyl amine motif predominately incorporated in current SHP2 allosteric inhibitors.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.3c00992