Molecular Electrocatalytic Processes in Carbon Nanopipettes
Conductive nanopipettes have been recognized as powerful multifunctional platforms for electrochemical sensing applications in confined spaces. However, the electron-transfer processes of many biological analytes (i.e., enzymes or proteins) are slow and coupled with chemical reactions, which have no...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2023-10, Vol.14 (39), p.8805-8810 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conductive nanopipettes have been recognized as powerful multifunctional platforms for electrochemical sensing applications in confined spaces. However, the electron-transfer processes of many biological analytes (i.e., enzymes or proteins) are slow and coupled with chemical reactions, which have not been well elucidated in conductive nanopipettes. In this Letter, both experimental and simulation methods are used to study electron-transfer processes coupled to chemical reactions (EC mechanism) in carbon nanopipettes (CNPs). It is demonstrated that the electroactive species can serve as redox mediator to help oxidize and reduce the nonelectroactive analytes of interest in the solution and produce noticeable catalytic current signals. Besides, glutathione was directly measured by using ferrocenemethanol as the redox mediator in the CNPs. The elucidated EC processes in CNPs would offer a new opportunity to measure nonelectroactive analytes in biological fields. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.3c02359 |