Effects of melatonin on dopaminergic neuron development via IP3-mediated mitochondrial Ca2+ regulation in autism spectrum disorder

Melatonin entrainment of suprachiasmatic nucleus-regulating circadian rhythms is mediated by MT1 and MT2 receptors. Melatonin also has neuroprotective and mitochondrial activating effects, suggesting it may affect neurodevelopment. We studied melatonin's pharmacological effects on autism spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2023-11, Vol.681, p.7-12
Hauptverfasser: Dong, Shuangshan, Kifune, Takashi, Kato, Hiroki, Wang, Lu, Kong, Jun, Hirofuji, Yuta, Sun, Xiao, Sato, Hiroshi, Ito, Yosuke, Kato, Takahiro A., Sakai, Yasunari, Ohga, Shouichi, Fukumoto, Satoshi, Masuda, Keiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Melatonin entrainment of suprachiasmatic nucleus-regulating circadian rhythms is mediated by MT1 and MT2 receptors. Melatonin also has neuroprotective and mitochondrial activating effects, suggesting it may affect neurodevelopment. We studied melatonin's pharmacological effects on autism spectrum disorder (ASD) neuropathology. Deciduous tooth-derived stem cells from children with ASD were used to model neurodevelopmental defects and differentiated into dopaminergic neurons (ASD-DNs) with or without melatonin. Without melatonin, ASD-DNs had reduced neurite outgrowth, mitochondrial dysfunction, lower mitochondrial Ca2+ levels, and Ca2+ accumulation in the endoplasmic reticulum (ER) compared to control DNs from typically developing children-derived stem cells. Melatonin enhanced IP3-dependent Ca2+ release from ER to mitochondria, improving mitochondrial function and neurite outgrowth in ASD-DNs. Luzindole, an MT1/MT2 antagonist, blocked these effects. Thus, melatonin supplementation may improve dopaminergic system development in ASD by modulating mitochondrial Ca2+ homeostasis via MT1/MT2 receptors. [Display omitted] •Dopaminergic neurons were differentiated from stem cells with or without melatonin.•ASD-DNs exhibited impaired neurite outgrowth and mitochondrial dysfunction.•Melatonin improved mitochondrial function and neurite outgrowth in ASD-DNs.•Melatonin supplementation may improve dopaminergic system development in ASD.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2023.09.050