A hierarchical clustering approach for examining the relationship between pelvis-proximal femur geometry and bone stress injury in runners

Bone stress injury (BSI) risk in runners is multifactorial and not well understood. Unsupervised machine learning approaches can potentially elucidate risk factors for BSI by identifying groups of similar runners within a population which differ in BSI incidence. Here, a hierarchical clustering appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2023-11, Vol.160, p.111782, Article 111782
Hauptverfasser: Martin, Jack A., Heiderscheit, Bryan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bone stress injury (BSI) risk in runners is multifactorial and not well understood. Unsupervised machine learning approaches can potentially elucidate risk factors for BSI by identifying groups of similar runners within a population which differ in BSI incidence. Here, a hierarchical clustering approach is used to identify groups of collegiate cross country runners based on 2-dimensional frontal plane pelvis and proximal femur geometry, which was extracted from dual-energy X-ray absorptiometry scans and dimensionally reduced by principal component analysis. Seven distinct groups were identified using the cluster tree, with the initial split being highly related to female-male differences. Visual inspection revealed clear differences between groups in pelvis and proximal femur geometry, and groups were found to differ in lower body BSI incidence during the subsequent academic year (Rand index = 0.53; adjusted Rand index = 0.07). Linear models showed between-cluster differences in visually identified geometric measures. Geometric measures were aggregated into a pelvis shape factor based on trends with BSI incidence, and the resulting shape factor was significantly different between clusters (p 
ISSN:0021-9290
1873-2380
1873-2380
DOI:10.1016/j.jbiomech.2023.111782