On optimal improvements of classical iterative schemes for Z -matrices

Many researchers have considered preconditioners, applied to linear systems, whose matrix coefficient is a Z - or an M -matrix, that make the associated Jacobi and Gauss–Seidel methods converge asymptotically faster than the unpreconditioned ones. Such preconditioners are chosen so that they elimina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2006-04, Vol.188 (1), p.89-106
Hauptverfasser: Noutsos, D., Tzoumas, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many researchers have considered preconditioners, applied to linear systems, whose matrix coefficient is a Z - or an M -matrix, that make the associated Jacobi and Gauss–Seidel methods converge asymptotically faster than the unpreconditioned ones. Such preconditioners are chosen so that they eliminate the off-diagonal elements of the same column or the elements of the first upper diagonal [Milaszewicz, LAA 93 (1987) 161–170], Gunawardena et al. [LAA 154–156 (1991) 123–143]. In this work we generalize the previous preconditioners to obtain optimal methods. “Good” Jacobi and Gauss–Seidel algorithms are given and preconditioners, that eliminate more than one entry per row, are also proposed and analyzed. Moreover, the behavior of the above preconditioners to the Krylov subspace methods is studied.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2005.03.057