Diving into cancer OXPHOS – The application of metabolic control analysis to cell and tissue research

Knowing how the oxidative phosphorylation (OXPHOS) system in cancer cells operates differently from that of normal cells would help find compounds that specifically paralyze the energy metabolism of cancer cells. The first experiments in the study of mitochondrial respiration using the metabolic con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioSystems 2023-11, Vol.233, p.105032-105032, Article 105032
Hauptverfasser: Puurand, Marju, Tepp, Kersti, Kaambre, Tuuli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Knowing how the oxidative phosphorylation (OXPHOS) system in cancer cells operates differently from that of normal cells would help find compounds that specifically paralyze the energy metabolism of cancer cells. The first experiments in the study of mitochondrial respiration using the metabolic control analysis (MCA) method were done with isolated liver mitochondria in the early 80s of the last century. Subsequent studies have shown that the regulation of mitochondrial respiration by ADP in isolated mitochondria differs significantly from a model of mitochondria in situ, where the contacts with components in the cytoplasm are largely preserved. The method of selective permeabilization of the outer membrane of the cells allows the application of MCA to evaluate the contribution of different components of the OXPHOS system to its functioning while mitochondria are in a natural state. In this review, we summarize the use of MCA to study OXPHOS in cancer using permeabilized cells and tissues. In addition, we give examples of how this data fits into cancer research with a completely different approach and methodology.
ISSN:0303-2647
1872-8324
DOI:10.1016/j.biosystems.2023.105032