Metal-binding cyclodextrins: Synthesis and complexation with Zn2+ and Ga3+ cations towards antimicrobial applications
Highly resistant bacteria producing metallo-β-lactamases (MBLs) to evade β-lactam antibiotics, constitute a major cause of life-threatening infections world-wide. MBLs exert their hydrolytic action via Zn2+ cations in their active center. Presently, there are no approved drugs to target MBLs and com...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2023-12, Vol.321, p.121323-121323, Article 121323 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highly resistant bacteria producing metallo-β-lactamases (MBLs) to evade β-lactam antibiotics, constitute a major cause of life-threatening infections world-wide. MBLs exert their hydrolytic action via Zn2+ cations in their active center. Presently, there are no approved drugs to target MBLs and combat the associated antimicrobial resistance (AMR). Towards this issue, we have prepared a family of cyclodextrins substituted with iminodiacetic acid (IDA) on their narrow side, while the wider side is either unmodified or per-2,3-O-methylated. The molecules form strong coordination complexes with Zn2+ or Ga3+ cations in aqueous solution. Free and metal-complexed compounds have been thoroughly characterized regarding structures, pH-dependent ionization states, distribution of species in solution, pKa values and metal-binding constants. At neutral pH the multi-anionic hosts bind up to four Zn2+ or Ga3+ cations. In vitro, 50 μΜ of the compounds achieve complete re-sensitization of MBL-producing Gram-negative clinical bacterial strains resistant to the carbapenems imipenem and meropenem. Moreover, the radioactive complex [67Ga]Ga-β-IDACYD prepared, displays high radiochemical purity, sufficient stability both overtime and in the presence of human plasma apo-transferrin, thus providing an invaluable tool for future biodistribution and pharmacokinetic studies of β-IDACYDin vivo, prerequisites for the development of therapeutic protocols.
[Display omitted] |
---|---|
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2023.121323 |