Inulin from halophilic archaeon Haloarcula: Production, chemical characterization, biological, and technological properties

Halophilic archaea are capable of producing fructans, which are fructose-based polysaccharides. However, their biochemical characterization and biological and technological properties have been scarcely studied. The aim of this study was to evaluate the production, chemical characterization, biologi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2023-12, Vol.321, p.121333-121333, Article 121333
Hauptverfasser: Aragón-León, Alejandra, Moreno-Vilet, Lorena, González-Ávila, Marisela, Mondragón-Cortez, Pedro Martín, Sassaki, Guilherme Lanzi, Martínez-Pérez, Raúl Balam, Camacho-Ruíz, Rosa María
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Halophilic archaea are capable of producing fructans, which are fructose-based polysaccharides. However, their biochemical characterization and biological and technological properties have been scarcely studied. The aim of this study was to evaluate the production, chemical characterization, biological and technological properties of a fructan inulin-type biosynthesized by a halophilic archaeon. Fructan extraction was performed through ethanol precipitation and purification by diafiltration. The chemical structure was elucidated using Fourier Transform-Infrared Spectroscopy and Nuclear Magnetic Resonance (NMR). Haloarcula sp. M1 biosynthesizes inulin with an average molecular weight of 8.37 × 106 Da. The maximal production reached 3.9 g of inulin per liter of culture within seven days. The glass transition temperature of inulin was measured at 138.85 °C, and it exhibited an emulsifying index of 36.47 %, which is higher than that of inulin derived from chicory. Inulin from Haloarcula sp. M1 (InuH) demonstrates prebiotic capacity. This study represents the first report on the biological and technological properties of inulin derived from halophilic archaea. [Display omitted]
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2023.121333