Enhanced CO adsorption on α-graphyne-supported and defective graphene-supported Cu19 clusters and a modified induction energy model

Ab initio molecular dynamics calculations were carried out to study the adsorption of CO on Cu19, α-graphyne-supported Cu19 and defective graphene-supported Cu19 clusters. The average adsorption energies on the three clusters are significantly increased by 68%, 104%, and 123% compared to the experim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-10, Vol.25 (38), p.26103-26111
Hauptverfasser: Gao, Delu, Liu, Naigui, Wang, Dunyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ab initio molecular dynamics calculations were carried out to study the adsorption of CO on Cu19, α-graphyne-supported Cu19 and defective graphene-supported Cu19 clusters. The average adsorption energies on the three clusters are significantly increased by 68%, 104%, and 123% compared to the experimental value on the pristine Cu(110) surface. Furthermore, the α-graphyne-supported and defective graphene-supported Cu19 clusters exhibit greater adsorption strength than the pure Cu19 cluster, with 22% and 33% higher adsorption energies, respectively. The crystal orbital Hamilton population analysis shows that for the same type of adsorption site, the adsorption energy is linearly related to the bond interaction strength between the adsorbate and the substrate. We propose a modified induction energy model to predict the increase of chemisorption energy on α-graphyne-supported and defective graphene-supported Cu19 clusters based on the bare Cu19 cluster. The chemisorption energy enhancement predicted by the improved induction energy model has very good agreement with that calculated based on the ab initio molecular dynamics method and is more accurate than that predicted by the original induction energy model.
ISSN:1463-9076
1463-9084
DOI:10.1039/d3cp03164k