The conjugate gradient spectral iterative technique for planar structures

It is shown that using the spectral iterative technique (SIT) to solve the first-kind integral equation is equivalent to the Neumann iterative solution of a related second-kind integral equation. It is thus shown that SIT only converges when the norm of the operator in the second-kind equation is sm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 1988-10, Vol.36 (10), p.1418-1423
Hauptverfasser: van den Berg, P.M., Kleinman, R.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that using the spectral iterative technique (SIT) to solve the first-kind integral equation is equivalent to the Neumann iterative solution of a related second-kind integral equation. It is thus shown that SIT only converges when the norm of the operator in the second-kind equation is small enough. Applying a conjugate gradient technique to the second-kind equation results in a convergent iterative scheme. Some representative numerical results show a superiority in the rate of convergence of the conjugate gradient scheme for the second-kind equation (CGSIT-scheme) when compared with the convergence of the conjugate scheme for the original first-kind equation (CG-scheme). The CGSIT-scheme combines the advantages of the conjugate gradient method with those of the spectral iterative technique.< >
ISSN:0018-926X
1558-2221
DOI:10.1109/8.8629