The conjugate gradient spectral iterative technique for planar structures
It is shown that using the spectral iterative technique (SIT) to solve the first-kind integral equation is equivalent to the Neumann iterative solution of a related second-kind integral equation. It is thus shown that SIT only converges when the norm of the operator in the second-kind equation is sm...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 1988-10, Vol.36 (10), p.1418-1423 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that using the spectral iterative technique (SIT) to solve the first-kind integral equation is equivalent to the Neumann iterative solution of a related second-kind integral equation. It is thus shown that SIT only converges when the norm of the operator in the second-kind equation is small enough. Applying a conjugate gradient technique to the second-kind equation results in a convergent iterative scheme. Some representative numerical results show a superiority in the rate of convergence of the conjugate gradient scheme for the second-kind equation (CGSIT-scheme) when compared with the convergence of the conjugate scheme for the original first-kind equation (CG-scheme). The CGSIT-scheme combines the advantages of the conjugate gradient method with those of the spectral iterative technique.< > |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/8.8629 |