Thermal stability of NiMn spin valve heads
The thermal stability of NiMn-based spin valves was studied both at the coupon level and in full read/write heads. In the coupons, the blocking temperature distribution showed no component below 150/spl deg/C. As a result, the exchange field at elevated temperature was found to increase with time (b...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2000-05, Vol.36 (3), p.586-590 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The thermal stability of NiMn-based spin valves was studied both at the coupon level and in full read/write heads. In the coupons, the blocking temperature distribution showed no component below 150/spl deg/C. As a result, the exchange field at elevated temperature was found to increase with time (because of improved chemical ordering of the NiMn layer), and irreversible losses in the /spl Delta/R/R response were observed only above 250/spl deg/C (because of layer interdiffusion). If a 10% drop in /spl Delta/R/R amplitude is used as a criterion to calculate time to failure, the NiMn heads should have several hundred years of lifetime at 150/spl deg/C operating temperature. Full read/write heads showed linear response with read-back amplitudes above 2 mV//spl mu/m at 6-mA operating current. In contrast to most other giant magnetoresistance heads, the output of the head remains the same after heating with a high bias current and degrades only with the shorting of the stripe. All these properties make NiMn superior to other antiferromagnets for spin valve head applications. |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/20.846222 |