The design of an optoelectronic arithmetic processor based on permutation networks

This paper introduces a new concept by which it is possible to design and implement arithmetic processors using permutation networks. To demonstrate this concept, several optoelectronic arithmetic units combining optical directional coupler switches and cyclic permutation networks are designed. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1997-02, Vol.46 (2), p.142-153
Hauptverfasser: Ming-Bo Lin, Oruc, A.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a new concept by which it is possible to design and implement arithmetic processors using permutation networks. To demonstrate this concept, several optoelectronic arithmetic units combining optical directional coupler switches and cyclic permutation networks are designed. The designs show that addition, subtraction, and multiplication can all be performed in O(log n) time in residue code domain and using O(n/sup 2/) directional coupler switches and gates, where n=log M, and M is the integer range of interest. These arithmetic units also have the capability of concurrent error detection and fault-tolerance, and they can be used to construct constant time inner product processors.
ISSN:0018-9340
1557-9956
DOI:10.1109/12.565589