Real-Time Dynamics and Detailed Balance in Ring Polymer Surface Hopping: The Impact of Frustrated Hops

Ring polymer surface hopping (RPSH) has been recently introduced as a well-tailored method for incorporating nuclear quantum effects, such as zero-point energy and tunneling, into nonadiabatic molecular dynamics simulations. The practical widespread usage of RPSH demands a comprehensive benchmarking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2023-09, Vol.14 (38), p.8658-8666
Hauptverfasser: Limbu, Dil K., Shakib, Farnaz A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ring polymer surface hopping (RPSH) has been recently introduced as a well-tailored method for incorporating nuclear quantum effects, such as zero-point energy and tunneling, into nonadiabatic molecular dynamics simulations. The practical widespread usage of RPSH demands a comprehensive benchmarking of different reaction regimes and conditions with equal emphasis on demonstrating both the cons and the pros of the method. Here, we investigate the fundamental questions related to the conservation of energy and detailed balance in the context of RPSH. Using Tully’s avoided crossing model as well as a 2-state quantum system coupled to a classical bath undergoing Langevin dynamics, we probe the critical problem of the proper treatment of the classically forbidden transitions stemming from the surface hopping algorithm. We show that proper treatment of these frustrated hops is key to the accurate description of real-time dynamics as well as reproducing the correct quantum Boltzmann populations.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.3c02085