On-Site-Activated Transmembrane Logic DNA Nanodevice Enables Highly Specific Imaging of Cancer Cells by Targeting Tumor-Related Nucleolin and Intracellular MicroRNA

The ability to specifically image cancer cells is essential for cancer diagnosis; however, this ability is limited by the false positive associated with single-biomarker sensors and off-site activation of “always active” nucleic acid probes. Herein, we propose an on-site, activatable, transmembrane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-10, Vol.95 (39), p.14746-14753
Hauptverfasser: Huang, Xing, Chen, Meng, Huang, Zhan, Zhang, Yanfei, Shen, Taorong, Shi, Yakun, Tong, Yanli, Zou, Xiaoyong, Liu, Si-Yang, Guo, Jianhe, Dai, Zong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to specifically image cancer cells is essential for cancer diagnosis; however, this ability is limited by the false positive associated with single-biomarker sensors and off-site activation of “always active” nucleic acid probes. Herein, we propose an on-site, activatable, transmembrane logic DNA (TLD) nanodevice that enables dual-biomarker sensing of tumor-related nucleolin and intracellular microRNA for highly specific cancer cell imaging. The TLD nanodevice is constructed by assembling a tetrahedral DNA nanostructure containing a linker (L)–blocker (B)–DNAzyme (D)–substrate (S) unit. AS-apt, a DNA strand containing an elongated segment and the AS1411 aptamer, is pre-anchored to nucleolin protein, which is specifically expressed on the membrane of cancer cells. Initially, the TLD nanodevice is firmly sealed by the blocker containing an AS-apt recognition zone, which prevents off-site activation. When the nanodevice encounters a target cancer cell, AS-apt (input 1) binds to the blocker and unlocks the sensing ability of the nanodevice for miR-21 (input 2). The TLD nanodevice achieves dual-biomarker sensing from the cell membrane to the cytoplasm, thereby ensuring cancer cell-specific imaging. This TLD nanodevice represents a promising strategy for the highly reliable analysis of intracellular biomarkers and a promising platform for cancer diagnosis and related biomedical applications.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.3c02868