On-Site-Activated Transmembrane Logic DNA Nanodevice Enables Highly Specific Imaging of Cancer Cells by Targeting Tumor-Related Nucleolin and Intracellular MicroRNA
The ability to specifically image cancer cells is essential for cancer diagnosis; however, this ability is limited by the false positive associated with single-biomarker sensors and off-site activation of “always active” nucleic acid probes. Herein, we propose an on-site, activatable, transmembrane...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2023-10, Vol.95 (39), p.14746-14753 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability to specifically image cancer cells is essential for cancer diagnosis; however, this ability is limited by the false positive associated with single-biomarker sensors and off-site activation of “always active” nucleic acid probes. Herein, we propose an on-site, activatable, transmembrane logic DNA (TLD) nanodevice that enables dual-biomarker sensing of tumor-related nucleolin and intracellular microRNA for highly specific cancer cell imaging. The TLD nanodevice is constructed by assembling a tetrahedral DNA nanostructure containing a linker (L)–blocker (B)–DNAzyme (D)–substrate (S) unit. AS-apt, a DNA strand containing an elongated segment and the AS1411 aptamer, is pre-anchored to nucleolin protein, which is specifically expressed on the membrane of cancer cells. Initially, the TLD nanodevice is firmly sealed by the blocker containing an AS-apt recognition zone, which prevents off-site activation. When the nanodevice encounters a target cancer cell, AS-apt (input 1) binds to the blocker and unlocks the sensing ability of the nanodevice for miR-21 (input 2). The TLD nanodevice achieves dual-biomarker sensing from the cell membrane to the cytoplasm, thereby ensuring cancer cell-specific imaging. This TLD nanodevice represents a promising strategy for the highly reliable analysis of intracellular biomarkers and a promising platform for cancer diagnosis and related biomedical applications. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.3c02868 |