Surfactant-Enhanced Treatment of Oil-Based Drill Cuttings
Surfactant-enhanced washing of oil-based drill cuttings was evaluated as a technology of benefit to domestic oil producers. Laboratory studies showed the branched C14-C15 alcohol propoxylate sulfate to be a promising surfactant for liberating oils from these drill cuttings. Low concentrations (∼0.1%...
Gespeichert in:
Veröffentlicht in: | Journal of energy resources technology 2005-06, Vol.127 (2), p.153-162 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surfactant-enhanced washing of oil-based drill cuttings was evaluated as a technology of benefit to domestic oil producers. Laboratory studies showed the branched C14-C15 alcohol propoxylate sulfate to be a promising surfactant for liberating oils from these drill cuttings. Low concentrations (∼0.1% by weight) of this surfactant produced ultra-low oil-water interfacial tensions (IFTs), thereby allowing the rollup/snap-off mechanisms to liberate drilling oil (C16, C18 alpha olefins) from the cuttings. Surfactant-enhanced washing was compared between oil-based drill cuttings, Canadian River Alluvium (CRA), and silica, showing that the hydrophobic nature of the oil-based cuttings limited the amount of oil removed. The Ca++ content of the cuttings promoted surfactant abstraction by the cuttings, thereby increasing the hydrophobicity and oil retention by the cuttings. For this reason, three components were added to produce a robust system: (1) branched C14-C15 alcohol propoxylate sulfate, (2) octyl-sulfobetaine, and (3) builder (Na2SiO3). The Na2SiO3 builder was added to promote Ca++ sequestration, thereby decreasing the Ca++ available for precipitating the surfactant. The octyl-sulfobetaine helps mitigate high hardness and high hydrophobicity by acting as a lime soap dispersing agent (LSDA). Surfactant losses were minimized and oil removal was maximized by using all three components. When washing with this three-component formulation, oil removal was relatively independent of operating conditions such as bath-cuttings contact time and agitation energy; minimizing the contact time and agitation has the added benefit of reducing the fines production during washing operations. When washing with the three-component formulation, the oil was liberated from the cuttings as a free phase layer, sans surfactant and sans solids. The final (post washing) oil content of oil-based cuttings was in the range of 2% to 5%, which is below treatment standards for these cuttings. In addition, greater than 85% of the initial branched C14-C15 alcohol propoxylate sulfate remained in the bath after washing, which minimizes the need for make-up surfactant when the wash water is reused. |
---|---|
ISSN: | 0195-0738 1528-8994 |
DOI: | 10.1115/1.1879044 |