Phylogeographic relationships and morphological evolution between cave and surface Astyanax mexicanus populations (De Filippi 1853) (Actinopterygii, Characidae)
The Astyanax mexicanus complex includes two different morphs, a surface‐ and a cave‐adapted ecotype, found at three mountain ranges in Northeastern Mexico: Sierra de El Abra, Sierra de Guatemala and Sierra de la Colmena (Micos). Since their discovery, multiple studies have attempted to characterize...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2023-10, Vol.32 (20), p.5626-5644 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The
Astyanax mexicanus
complex includes two different morphs, a surface‐ and a cave‐adapted ecotype, found at three mountain ranges in Northeastern Mexico: Sierra de El Abra, Sierra de Guatemala and Sierra de la Colmena (Micos). Since their discovery, multiple studies have attempted to characterize the timing and the number of events that gave rise to the evolution of these cave‐adapted ecotypes. Here, using RADseq and genome‐wide sequencing, we assessed the phylogenetic relationships, genetic structure and gene flow events between the cave and surface
Astyanax mexicanus
populations, to estimate the tempo and mode of evolution of the cave‐adapted ecotypes. We also evaluated the body shape evolution across different cave lineages using geometric morphometrics to examine the role of phylogenetic signal versus environmental pressures. We found strong evidence of parallel evolution of cave‐adapted ecotypes derived from two separate lineages of surface fish and hypothesize that there may be up to four independent invasions of caves from surface fish. Moreover, a strong congruence between the genetic structure and geographic distribution was observed across the cave populations, with the Sierra de Guatemala the region exhibiting most genetic drift among the cave populations analysed. Interestingly, we found no evidence of phylogenetic signal in body shape evolution, but we found support for parallel evolution in body shape across independent cave lineages, with cavefish from the Sierra de El Abra reflecting the most divergent morphology relative to surface and other cavefish populations. |
---|---|
ISSN: | 0962-1083 1365-294X 1365-294X |
DOI: | 10.1111/mec.17128 |