Integrated Assessment of Computational Coronary Physiology From a Single Angiographic View in Patients Undergoing TAVI

Angiography-derived computational physiology is an appealing alternative to pressure-wire coronary physiology assessment. However, little is known about its reliability in the setting of severe aortic stenosis. This study sought to provide an integrated assessment of epicardial and microvascular cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation. Cardiovascular interventions 2023-10, Vol.16 (10), p.e013185
Hauptverfasser: Fezzi, Simone, Ding, Daixin, Scarsini, Roberto, Huang, Jiayue, Del Sole, Paolo Alberto, Zhao, Qiang, Pesarini, Gabriele, Simpkin, Andrew, Wijns, William, Ribichini, Flavio, Tu, Shengxian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Angiography-derived computational physiology is an appealing alternative to pressure-wire coronary physiology assessment. However, little is known about its reliability in the setting of severe aortic stenosis. This study sought to provide an integrated assessment of epicardial and microvascular coronary circulation by means of single-view angiography-derived physiology in patients with severe aortic stenosis undergoing transcatheter aortic valve implantation (TAVI).BACKGROUNDAngiography-derived computational physiology is an appealing alternative to pressure-wire coronary physiology assessment. However, little is known about its reliability in the setting of severe aortic stenosis. This study sought to provide an integrated assessment of epicardial and microvascular coronary circulation by means of single-view angiography-derived physiology in patients with severe aortic stenosis undergoing transcatheter aortic valve implantation (TAVI).Pre-TAVI angiographic projections of 198 stenotic coronary arteries (123 patients) were analyzed by means of Murray's law-based quantitative flow ratio and angiography microvascular resistance. Wire-based reference measurements were available for comparison: fractional flow reserve (FFR) in all cases, instantaneous wave-free ratio in 148, and index of microvascular resistance in 42 arteries.METHODSPre-TAVI angiographic projections of 198 stenotic coronary arteries (123 patients) were analyzed by means of Murray's law-based quantitative flow ratio and angiography microvascular resistance. Wire-based reference measurements were available for comparison: fractional flow reserve (FFR) in all cases, instantaneous wave-free ratio in 148, and index of microvascular resistance in 42 arteries.No difference in terms of the number of ischemia-causing stenoses was detected between FFR ≤0.80 and Murray's law-based quantitative flow ratio ≤0.80 (19.7% versus 19.2%; P=0.899), while this was significantly higher when instantaneous wave-free ratio ≤0.89 (44.6%; P=0.001) was used. The accuracy of Murray's law-based quantitative flow ratio ≤0.80 in predicting pre-TAVI FFR ≤0.80 was significantly higher than the accuracy of instantaneous wave-free ratio ≤0.89 (93.4% versus 77.0%; P=0.001), driven by a higher positive predictive value (86.9% versus 50%). Similar findings were observed when considering post-TAVI FFR ≤0.80 as reference. In 82 cases with post-TAVI angiographic projections, Murray's law-based quantitative flow ratio values remaine
ISSN:1941-7640
1941-7632
1941-7632
DOI:10.1161/CIRCINTERVENTIONS.123.013185