RNA modifications in physiology and disease: towards clinical applications

The ability of chemical modifications of single nucleotides to alter the electrostatic charge, hydrophobic surface and base pairing of RNA molecules is exploited for the clinical use of stable artificial RNAs such as mRNA vaccines and synthetic small RNA molecules — to increase or decrease the expre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Genetics 2024-02, Vol.25 (2), p.104-122
Hauptverfasser: Delaunay, Sylvain, Helm, Mark, Frye, Michaela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability of chemical modifications of single nucleotides to alter the electrostatic charge, hydrophobic surface and base pairing of RNA molecules is exploited for the clinical use of stable artificial RNAs such as mRNA vaccines and synthetic small RNA molecules — to increase or decrease the expression of therapeutic proteins. Furthermore, naturally occurring biochemical modifications of nucleotides regulate RNA metabolism and function to modulate crucial cellular processes. Studies showing the mechanisms by which RNA modifications regulate basic cell functions in higher organisms have led to greater understanding of how aberrant RNA modification profiles can cause disease in humans. Together, these basic science discoveries have unravelled the molecular and cellular functions of RNA modifications, have provided new prospects for therapeutic manipulation and have led to a range of innovative clinical approaches. Native nucleotide modifications regulate RNA function and metabolism, the study of which has revealed disease mechanisms, offers therapeutic potential and enables innovative clinical strategies. Chemical modifications in RNA are harnessed for clinical use in stable artificial RNAs such as mRNA vaccines and synthetic small RNA molecules.
ISSN:1471-0056
1471-0064
DOI:10.1038/s41576-023-00645-2