Unsupervised machine learning to classify the confinement of waves in periodic superstructures

We propose a rigorous method to classify the dimensionality of wave confinement by utilizing unsupervised machine learning to enhance the accuracy of our recently presented scaling method [ Phys. Rev. Lett. 129 , 176401 ( 2022 ) 10.1103/PhysRevLett.129.176401 ]. We apply the standard k-means++ algor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2023-09, Vol.31 (19), p.31177
Hauptverfasser: Kozoň, Marek, Schrijver, Rutger, Schlottbom, Matthias, van der Vegt, Jaap J. W., Vos, Willem L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a rigorous method to classify the dimensionality of wave confinement by utilizing unsupervised machine learning to enhance the accuracy of our recently presented scaling method [ Phys. Rev. Lett. 129 , 176401 ( 2022 ) 10.1103/PhysRevLett.129.176401 ]. We apply the standard k-means++ algorithm as well as our own model-based algorithm to 3D superlattices of resonant cavities embedded in a 3D inverse woodpile photonic band gap crystal with a range of design parameters. We compare their results against each other and against the direct usage of the scaling method without clustering. Since the clustering algorithms require the set of confinement dimensionalities present in the system as an input, we investigate cluster validity indices (CVIs) as a means to find these values. We conclude that the most accurate outcome is obtained by first applying direct scaling to find the correct set of confinement dimensionalities, and subsequently utilizing our model-based clustering algorithm to refine the results.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.492014