Synergetic Role of Thermal Catalysis and Photocatalysis in CO2 Reduction on Cu2/MoS2

Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO–LUMO). Here, we employ state-of-the-art first-principles calculations to explore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2023-09, Vol.14 (38), p.8421-8427
Hauptverfasser: Wang, Qiuyu, Wang, Hening, Ren, Xiaoyan, Pang, Rui, Zhao, Xingju, Zhang, Lili, Li, Shunfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8427
container_issue 38
container_start_page 8421
container_title The journal of physical chemistry letters
container_volume 14
creator Wang, Qiuyu
Wang, Hening
Ren, Xiaoyan
Pang, Rui
Zhao, Xingju
Zhang, Lili
Li, Shunfang
description Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO–LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2 δ‑ species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.
doi_str_mv 10.1021/acs.jpclett.3c01665
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2865784553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2865784553</sourcerecordid><originalsourceid>FETCH-LOGICAL-a228t-f82fb82c2f6825626d22ed97859c364119326407759ae92c2e9cd1258d28af383</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKe_wJtcetMtOWnS5FKKXzCZbPU6xDR1HVkzm_Ri_97qhggH3sPLw-HwIHRLyYwSoHNj42y7t96lNGOWUCH4GZpQlcusoJKf_9sv0VWMW0KEIrKYoGp96Fz_6VJr8Sp4h0ODq43rd8bj0iTjD7GN2HQ1ftuEFOxf1Xa4XAJeuXqwqQ0dHqccYP4a1nCNLhrjo7s55RS9Pz5U5XO2WD69lPeLzADIlDUSmg8JFhohgQsQNYCrVSG5skzklCoGIidFwZVxauScsjUFLmuQpmGSTdHd8e6-D1-Di0nv2mid96ZzYYgapOCFzDlnIzo_oqMqvQ1D342PaUr0jz_9Wx796ZM_9g38pmTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865784553</pqid></control><display><type>article</type><title>Synergetic Role of Thermal Catalysis and Photocatalysis in CO2 Reduction on Cu2/MoS2</title><source>American Chemical Society Journals</source><creator>Wang, Qiuyu ; Wang, Hening ; Ren, Xiaoyan ; Pang, Rui ; Zhao, Xingju ; Zhang, Lili ; Li, Shunfang</creator><creatorcontrib>Wang, Qiuyu ; Wang, Hening ; Ren, Xiaoyan ; Pang, Rui ; Zhao, Xingju ; Zhang, Lili ; Li, Shunfang</creatorcontrib><description>Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO–LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2 δ‑ species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c01665</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><ispartof>The journal of physical chemistry letters, 2023-09, Vol.14 (38), p.8421-8427</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4850-5713 ; 0000-0003-4661-6188 ; 0000-0001-9243-7960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.3c01665$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.3c01665$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Wang, Qiuyu</creatorcontrib><creatorcontrib>Wang, Hening</creatorcontrib><creatorcontrib>Ren, Xiaoyan</creatorcontrib><creatorcontrib>Pang, Rui</creatorcontrib><creatorcontrib>Zhao, Xingju</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Li, Shunfang</creatorcontrib><title>Synergetic Role of Thermal Catalysis and Photocatalysis in CO2 Reduction on Cu2/MoS2</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO–LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2 δ‑ species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.</description><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOKe_wJtcetMtOWnS5FKKXzCZbPU6xDR1HVkzm_Ri_97qhggH3sPLw-HwIHRLyYwSoHNj42y7t96lNGOWUCH4GZpQlcusoJKf_9sv0VWMW0KEIrKYoGp96Fz_6VJr8Sp4h0ODq43rd8bj0iTjD7GN2HQ1ftuEFOxf1Xa4XAJeuXqwqQ0dHqccYP4a1nCNLhrjo7s55RS9Pz5U5XO2WD69lPeLzADIlDUSmg8JFhohgQsQNYCrVSG5skzklCoGIidFwZVxauScsjUFLmuQpmGSTdHd8e6-D1-Di0nv2mid96ZzYYgapOCFzDlnIzo_oqMqvQ1D342PaUr0jz_9Wx796ZM_9g38pmTg</recordid><startdate>20230928</startdate><enddate>20230928</enddate><creator>Wang, Qiuyu</creator><creator>Wang, Hening</creator><creator>Ren, Xiaoyan</creator><creator>Pang, Rui</creator><creator>Zhao, Xingju</creator><creator>Zhang, Lili</creator><creator>Li, Shunfang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4850-5713</orcidid><orcidid>https://orcid.org/0000-0003-4661-6188</orcidid><orcidid>https://orcid.org/0000-0001-9243-7960</orcidid></search><sort><creationdate>20230928</creationdate><title>Synergetic Role of Thermal Catalysis and Photocatalysis in CO2 Reduction on Cu2/MoS2</title><author>Wang, Qiuyu ; Wang, Hening ; Ren, Xiaoyan ; Pang, Rui ; Zhao, Xingju ; Zhang, Lili ; Li, Shunfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a228t-f82fb82c2f6825626d22ed97859c364119326407759ae92c2e9cd1258d28af383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiuyu</creatorcontrib><creatorcontrib>Wang, Hening</creatorcontrib><creatorcontrib>Ren, Xiaoyan</creatorcontrib><creatorcontrib>Pang, Rui</creatorcontrib><creatorcontrib>Zhao, Xingju</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Li, Shunfang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiuyu</au><au>Wang, Hening</au><au>Ren, Xiaoyan</au><au>Pang, Rui</au><au>Zhao, Xingju</au><au>Zhang, Lili</au><au>Li, Shunfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergetic Role of Thermal Catalysis and Photocatalysis in CO2 Reduction on Cu2/MoS2</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-09-28</date><risdate>2023</risdate><volume>14</volume><issue>38</issue><spage>8421</spage><epage>8427</epage><pages>8421-8427</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO–LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2 δ‑ species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.3c01665</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4850-5713</orcidid><orcidid>https://orcid.org/0000-0003-4661-6188</orcidid><orcidid>https://orcid.org/0000-0001-9243-7960</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2023-09, Vol.14 (38), p.8421-8427
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2865784553
source American Chemical Society Journals
subjects Physical Insights into Chemistry, Catalysis, and Interfaces
title Synergetic Role of Thermal Catalysis and Photocatalysis in CO2 Reduction on Cu2/MoS2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergetic%20Role%20of%20Thermal%20Catalysis%20and%20Photocatalysis%20in%20CO2%20Reduction%20on%20Cu2/MoS2&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Wang,%20Qiuyu&rft.date=2023-09-28&rft.volume=14&rft.issue=38&rft.spage=8421&rft.epage=8427&rft.pages=8421-8427&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c01665&rft_dat=%3Cproquest_acs_j%3E2865784553%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865784553&rft_id=info:pmid/&rfr_iscdi=true