Synergetic Role of Thermal Catalysis and Photocatalysis in CO2 Reduction on Cu2/MoS2
Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO–LUMO). Here, we employ state-of-the-art first-principles calculations to explore...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2023-09, Vol.14 (38), p.8421-8427 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8427 |
---|---|
container_issue | 38 |
container_start_page | 8421 |
container_title | The journal of physical chemistry letters |
container_volume | 14 |
creator | Wang, Qiuyu Wang, Hening Ren, Xiaoyan Pang, Rui Zhao, Xingju Zhang, Lili Li, Shunfang |
description | Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO–LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2 δ‑ species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs. |
doi_str_mv | 10.1021/acs.jpclett.3c01665 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2865784553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2865784553</sourcerecordid><originalsourceid>FETCH-LOGICAL-a228t-f82fb82c2f6825626d22ed97859c364119326407759ae92c2e9cd1258d28af383</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKe_wJtcetMtOWnS5FKKXzCZbPU6xDR1HVkzm_Ri_97qhggH3sPLw-HwIHRLyYwSoHNj42y7t96lNGOWUCH4GZpQlcusoJKf_9sv0VWMW0KEIrKYoGp96Fz_6VJr8Sp4h0ODq43rd8bj0iTjD7GN2HQ1ftuEFOxf1Xa4XAJeuXqwqQ0dHqccYP4a1nCNLhrjo7s55RS9Pz5U5XO2WD69lPeLzADIlDUSmg8JFhohgQsQNYCrVSG5skzklCoGIidFwZVxauScsjUFLmuQpmGSTdHd8e6-D1-Di0nv2mid96ZzYYgapOCFzDlnIzo_oqMqvQ1D342PaUr0jz_9Wx796ZM_9g38pmTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865784553</pqid></control><display><type>article</type><title>Synergetic Role of Thermal Catalysis and Photocatalysis in CO2 Reduction on Cu2/MoS2</title><source>American Chemical Society Journals</source><creator>Wang, Qiuyu ; Wang, Hening ; Ren, Xiaoyan ; Pang, Rui ; Zhao, Xingju ; Zhang, Lili ; Li, Shunfang</creator><creatorcontrib>Wang, Qiuyu ; Wang, Hening ; Ren, Xiaoyan ; Pang, Rui ; Zhao, Xingju ; Zhang, Lili ; Li, Shunfang</creatorcontrib><description>Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO–LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2 δ‑ species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c01665</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><ispartof>The journal of physical chemistry letters, 2023-09, Vol.14 (38), p.8421-8427</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4850-5713 ; 0000-0003-4661-6188 ; 0000-0001-9243-7960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.3c01665$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.3c01665$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Wang, Qiuyu</creatorcontrib><creatorcontrib>Wang, Hening</creatorcontrib><creatorcontrib>Ren, Xiaoyan</creatorcontrib><creatorcontrib>Pang, Rui</creatorcontrib><creatorcontrib>Zhao, Xingju</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Li, Shunfang</creatorcontrib><title>Synergetic Role of Thermal Catalysis and Photocatalysis in CO2 Reduction on Cu2/MoS2</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO–LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2 δ‑ species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.</description><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOKe_wJtcetMtOWnS5FKKXzCZbPU6xDR1HVkzm_Ri_97qhggH3sPLw-HwIHRLyYwSoHNj42y7t96lNGOWUCH4GZpQlcusoJKf_9sv0VWMW0KEIrKYoGp96Fz_6VJr8Sp4h0ODq43rd8bj0iTjD7GN2HQ1ftuEFOxf1Xa4XAJeuXqwqQ0dHqccYP4a1nCNLhrjo7s55RS9Pz5U5XO2WD69lPeLzADIlDUSmg8JFhohgQsQNYCrVSG5skzklCoGIidFwZVxauScsjUFLmuQpmGSTdHd8e6-D1-Di0nv2mid96ZzYYgapOCFzDlnIzo_oqMqvQ1D342PaUr0jz_9Wx796ZM_9g38pmTg</recordid><startdate>20230928</startdate><enddate>20230928</enddate><creator>Wang, Qiuyu</creator><creator>Wang, Hening</creator><creator>Ren, Xiaoyan</creator><creator>Pang, Rui</creator><creator>Zhao, Xingju</creator><creator>Zhang, Lili</creator><creator>Li, Shunfang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4850-5713</orcidid><orcidid>https://orcid.org/0000-0003-4661-6188</orcidid><orcidid>https://orcid.org/0000-0001-9243-7960</orcidid></search><sort><creationdate>20230928</creationdate><title>Synergetic Role of Thermal Catalysis and Photocatalysis in CO2 Reduction on Cu2/MoS2</title><author>Wang, Qiuyu ; Wang, Hening ; Ren, Xiaoyan ; Pang, Rui ; Zhao, Xingju ; Zhang, Lili ; Li, Shunfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a228t-f82fb82c2f6825626d22ed97859c364119326407759ae92c2e9cd1258d28af383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiuyu</creatorcontrib><creatorcontrib>Wang, Hening</creatorcontrib><creatorcontrib>Ren, Xiaoyan</creatorcontrib><creatorcontrib>Pang, Rui</creatorcontrib><creatorcontrib>Zhao, Xingju</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Li, Shunfang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiuyu</au><au>Wang, Hening</au><au>Ren, Xiaoyan</au><au>Pang, Rui</au><au>Zhao, Xingju</au><au>Zhang, Lili</au><au>Li, Shunfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergetic Role of Thermal Catalysis and Photocatalysis in CO2 Reduction on Cu2/MoS2</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2023-09-28</date><risdate>2023</risdate><volume>14</volume><issue>38</issue><spage>8421</spage><epage>8427</epage><pages>8421-8427</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO–LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2 δ‑ species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.3c01665</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4850-5713</orcidid><orcidid>https://orcid.org/0000-0003-4661-6188</orcidid><orcidid>https://orcid.org/0000-0001-9243-7960</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2023-09, Vol.14 (38), p.8421-8427 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_2865784553 |
source | American Chemical Society Journals |
subjects | Physical Insights into Chemistry, Catalysis, and Interfaces |
title | Synergetic Role of Thermal Catalysis and Photocatalysis in CO2 Reduction on Cu2/MoS2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergetic%20Role%20of%20Thermal%20Catalysis%20and%20Photocatalysis%20in%20CO2%20Reduction%20on%20Cu2/MoS2&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Wang,%20Qiuyu&rft.date=2023-09-28&rft.volume=14&rft.issue=38&rft.spage=8421&rft.epage=8427&rft.pages=8421-8427&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c01665&rft_dat=%3Cproquest_acs_j%3E2865784553%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865784553&rft_id=info:pmid/&rfr_iscdi=true |