Synergetic Role of Thermal Catalysis and Photocatalysis in CO2 Reduction on Cu2/MoS2

Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO–LUMO). Here, we employ state-of-the-art first-principles calculations to explore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2023-09, Vol.14 (38), p.8421-8427
Hauptverfasser: Wang, Qiuyu, Wang, Hening, Ren, Xiaoyan, Pang, Rui, Zhao, Xingju, Zhang, Lili, Li, Shunfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO–LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2 δ‑ species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.3c01665