Mechanism analysis of surface structure-regulated Cu2O in photocatalytic antibacterial process

The effects of exposing crystal planes and vacancy defect engineering can induce unique surface atom arrangements that strongly influence the physicochemical properties of semiconductor materials. This paper used Cu2O with different surface structures as a research model. A liquid-phase method was c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2024-01, Vol.461, p.132479-132479, Article 132479
Hauptverfasser: Wang, Kangfu, Lv, Meiru, Si, Tian, Tang, Xiaoning, Wang, Hao, Chen, Yuanyuan, Zhou, Tian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of exposing crystal planes and vacancy defect engineering can induce unique surface atom arrangements that strongly influence the physicochemical properties of semiconductor materials. This paper used Cu2O with different surface structures as a research model. A liquid-phase method was chosen for surface structure regulation to prepare Cu2O semiconductors (Vo-(111)Cu2O, Vo-(100)Cu2O, Vo-(110)Cu2O) with different exposed crystalline surfaces analyze the antibacterial mechanisms of other faceted models in the photodynamic antibacterial process. The bactericidal effect of Vo-(111)Cu2O (40 μg/mL, 100%) was better than that of Vo-(100)Cu2O and Vo-(110)Cu2O. DFT simulations show that the photocatalytic antimicrobial performance of Vo-(111)Cu2O is improved due to surface defect structures caused by unsaturated coordination bonds and suspension bonds on its exposed crystalline surfaces. The suspension bonds act as active centres for trapping electrons, leading to a lower carrier complexation rate on the material surface. The antibacterial mechanism of Vo-(111)Cu2O showed that oxidative sterilization by reactive oxygen species (ROS) was the dominant factor (61.98%) in the antibacterial process. The most potent depolarizing effect on E. coli, the highest copper ion solubilization, and the highest ROS yield. Therefore, ROS oxidative sterilization, copper ion leaching sterilization, and contact damage synergistically affect E. coli from the inside out. [Display omitted] •Cu2O as a model for photocatalysis based on crystal surface and defect-bound.•Regulated Cu2O exposes 111, 110, and 100 crystal planes with oxygen vacancies.•Unsaturated and dangling bonds of (111) exhibit the highest photocatalytic activity.•The main antimicrobial of Vo-(111)Cu2O is attributed to ROS photocatalytic activity.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2023.132479