A novel mechanism of enhanced PCBs degradation associated with nitrogen in the rhizosphere of the wetland plant Myriophyllum aquaticum
Co-contamination of polychlorinated biphenyls (PCBs) and nitrogen (N) is widespread. Here, N removal and PCBs degradation were investigated in constructed wetlands populated with Myriophyllum aquaticum, and the role of N in PCBs degradation was explored as well. Nearly 97% of N was removed in the pl...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-01, Vol.461, p.132466-132466, Article 132466 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Co-contamination of polychlorinated biphenyls (PCBs) and nitrogen (N) is widespread. Here, N removal and PCBs degradation were investigated in constructed wetlands populated with Myriophyllum aquaticum, and the role of N in PCBs degradation was explored as well. Nearly 97% of N was removed in the planted system, whereas less than 40% was removed in the plant-free system. Compared to the treatment with plants and no N amendment, N addition enhanced plant growth by 31.9% and PCBs removal by 9.90%. PCBs attenuation was mainly attributed to microbial degradation rather than plant uptake. Using DNA stable-isotope probing, 26 operational taxonomic units were identified across all treatments, of which 25 were linked to PCBs degradation for the first time. Some PCB-degraders were associated with nitrification/denitrification and were significantly enriched in the treatment that included both plants and N application, indicating that PCBs degradation was promoted by recruiting ammonia-oxidising and denitrifying microbes with PCBs metabolic ability. This was confirmed by the higher A13/A12 ratios for the bphC, amoA, and nirK genes and their significant positive correlations. Overall, the findings clarify the novel mechanism by which N promotes PCBs degradation in constructed wetlands and offers a theoretical basis for efficiently removing inorganic elements and persistent organic pollutants.
[Display omitted]
•N increased the plant growth and microbial degradation of PCBs.•N promoted PCBs removal mainly via microbial degradation, instead of plant uptake.•N enriched ammonia-metabolic microbes with PCB-removal ability in rhizosphere. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2023.132466 |