Scutellarin suppresses the metastasis of triple-negative breast cancer via targeting TNFα/TNFR2-RUNX1-triggered G-CSF expression in endothelial cells

[Display omitted] Triple-negative breast cancer (TNBC) is heterogeneous and aggressive, with high vascularity and frequent metastasis. We have already found natural flavonoid scutellarin (SC) suppressed spontaneous TNBC metastasis via normalizing tumor vasculature in vivo. In this study, supernatant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 2023-11, Vol.217, p.115808-115808, Article 115808
Hauptverfasser: Mei, Xiyu, Ouyang, Hao, Zhang, Hong, Jia, Wangya, Lu, Bin, Zhang, Jingnan, Ji, Lili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Triple-negative breast cancer (TNBC) is heterogeneous and aggressive, with high vascularity and frequent metastasis. We have already found natural flavonoid scutellarin (SC) suppressed spontaneous TNBC metastasis via normalizing tumor vasculature in vivo. In this study, supernatant from tumor necrosis factorα (TNFα)-treated human mammary microvascular endothelial cell (HMMEC) promoted cell migration and pseudopod formation in TNBC cells, but these phenomena were disappeared in SC-co-treated HMMEC. TNFα enhanced the expression of granulocyte colony-stimulating factor (G-CSF) and granulocyte–macrophage colony-stimulating factor (GM-CSF) in both HMMEC and human umbilical vein endothelial cell (HUVEC). G-CSF promoted TNBC migration and invasion in vitro, while G-CSF neutralization antibody and SC both inhibited TNBC metastasis in Balb/c mice. SC had no inhibition on the G-CSF-induced TNBC cell migration, but reduced G-CSF content in TNBC tumor tissues and TNFα-stimulated endothelial cells (ECs). SC restricted the nuclear translocation of runt-related transcription factor 1 (RUNX1) in TNBC tumor vessels and TNFα-treated ECs. RUNX1 was found to directly bind to the promoter of G-CSF in TNBC tumor vessels and regulated G-CSF expression. TNF receptor 2 (TNFR2) was crucial for regulating the TNFα-induced RUNX1 activation and G-CSF expression. Notably, SC hindered the interaction between TNFα and TNFR2 via binding to TNFR2. This work demonstrated that SC reduced TNBC metastasis by targeting TNFα/TNFR2-initiated RUNX1 activation and subsequent G-CSF production in TNBC-associated ECs.
ISSN:0006-2952
1873-2968
DOI:10.1016/j.bcp.2023.115808