An innovative processing driven efficient transformation of rare ginsenosides enhances anti-platelet aggregation potency of notoginseng by integrated analyses of processing-(chemical) profiling-pharmacodynamics

Panax notoginseng (Burk.) F. H. Chen, a valuable Chinese herb medicine, shows a characteristic bi-directional regulation of hemostasis and activating blood circulation with ginsenosides as the predominant bioactive compounds and is a typical representative of “processing triggered heteropotency”. Pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ethnopharmacology 2024-01, Vol.319, p.117126-117126, Article 117126
Hauptverfasser: Fan, Wenxiang, Liao, Qi, Fan, Linhong, Li, Qi, Liu, Longchan, Wang, Ziying, Mei, Yuqi, Li, Linnan, Yang, Li, Wang, Zhengtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Panax notoginseng (Burk.) F. H. Chen, a valuable Chinese herb medicine, shows a characteristic bi-directional regulation of hemostasis and activating blood circulation with ginsenosides as the predominant bioactive compounds and is a typical representative of “processing triggered heteropotency”. Processing triggered heteropotency, one of the unique theories and practices in traditional Chinese medicine, refers to that the processing will lead to change in physical and chemical properties, and eventually disparate efficacy of the crude drugs, yet the optimum process and underlying mechanism remains unclear. In this study, using Panax notoginseng (PN) as a representative sample, a processing-(chemical) profiling-pharmacodynamics (3-P) relationship was proposed to investigate the processing mechanism of PN. Firstly, a temperature programmed steaming process was designed to evaluate the steaming triggered chemical transformation of triterpene saponins and the corresponding enhancement in anti-platelet aggregation activity. The steaming process was programed from the conventional 100 °C–150 °C in a time course of 0–12 h, aiming to achieve the maximized conversion of rare ginsenosides (RGs), and dynamic profile of ginsenosides were constructed by a UPLC-Q-TOF-MS/MS analysis. Then, a processing-(chemical) profiling-pharmacodynamics (3-P) relationship was assessed by using the grey relational analysis (GRA) and orthogonal projections to latent structures (OPLS), and validated by bioactive fraction of 140 °C steamed PN. Subsequently, the P2Y12-ligand binding affinity of potential candidates was analyzed by molecular docking. Finally, the dynamic changes of ginsenosides during steaming of SPN were quantitatively detected by UPLC-QQQ-MS/MS. A total of 48 differential ginsenosides were characterized and monitored including the primary and secondarily transformed saponins. The higher temperature steaming especially at 140 °C induces not only the predominant production of the RGs, but also the stronger anti-platelet aggregation activity. The 3-P relationship showed the fraction (3) of 140 °C steamed PN rich in RGs exhibits the most predominant efficacy, in which, a series of RGs including ginsenosides Rg5, Rk1, 20(S/R)-Rg3 were proven to be potent components. Molecular docking analysis suggested that ginsenosides Rg5 and Rk1 showed more strong interaction with the platelet P2Y12 receptor. Quantitative analysis found 140 °C-2h PN possessed highest contents of Rk1 and Rg
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2023.117126