Booklice Liposcelis bostrychophila are efficiently attracted by the combination of 2,3,5,6-tetramethylpyrazine and ultraviolet light

Booklice Liposcelis bostrychophila are frequently found almost everywhere, including private houses and cleanrooms of factories and institutes. They often cause serious hygienic as well as agricultural problems, but a useful trap has not been developed so far. Therefore, an effective way to monitor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pest management science 2024-02, Vol.80 (2), p.426-432
Hauptverfasser: Tanaka, Kohjiro, Ozawa, Rika, Takabayashi, Junji, Ochiai, Masanori, Hayakawa, Yoichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Booklice Liposcelis bostrychophila are frequently found almost everywhere, including private houses and cleanrooms of factories and institutes. They often cause serious hygienic as well as agricultural problems, but a useful trap has not been developed so far. Therefore, an effective way to monitor and capture booklice is required. We here identified a new attractant, 2,3,5,6-tetramethylpyrazine (TMP), which efficiently captured booklice in combination with UV light. When booklice placed at both right and left edges of an assay tray were exposed to light stimulus from the center, test insects gathered at the center. The attraction was stronger with shorter wavelengths than longer ones: 365-nm ultraviolet (UV) light showed the strongest attraction of four tested light wavelengths. We found that cocoa powder attracted booklice weakly but significantly under total darkness. Furthermore, the cocoa smell was confirmed to enhance the attraction to light at all tested wavelengths irrespective of the difference between two brands of cocoa powders. Gas chromatography-mass spectrometry indicated that both cocoa products contain TMP as a major odor compound. Exposure of booklice to TMP significantly enhanced the attraction to UV light: the combined use with TMP almost doubled the attraction compared to the light only. By contrast, TMP homologs, pyrazine and dimethylpyrazines, showed strong repellent activities under UV light exposure. TMP enhanced the UV light attraction for booklice while pyrazine and dimethylpyrazines diminished it. Use of these attractant and repellent pyrazine derivatives together with UV light would enable us to develop a practical new way to monitor and capture booklice. © 2023 Society of Chemical Industry.
ISSN:1526-498X
1526-4998
DOI:10.1002/ps.7773