Numerical Analysis of Temperature Distribution in Friction Welding of Carbon Steel

The purpose of this study is to estimate temperature distribution in the vicinity of weld interface during a friction welding process involving an upset process. On the base of a simple model of friction heat input, a non-steady heat conduction analysis was carried out by finite element method. As a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of High Temperature Society 2005/07/20, Vol.31(4), pp.225-231
Hauptverfasser: ISSHIKI, Yoshihiro, YAMAGUCHI, Hiroshi, KAWAI, Gosaku, OGAWA, Koichi
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this study is to estimate temperature distribution in the vicinity of weld interface during a friction welding process involving an upset process. On the base of a simple model of friction heat input, a non-steady heat conduction analysis was carried out by finite element method. As a result from a comparison of the estimated temperature distribution with the experimental data, it turned out that the friction heat input model that allowed for the effects of temperature and linear velocity on the friction coefficient was appropriate. This heat input model could simulate adequately the change in friction heat input and temperature distribution in a friction welding process. As a result, the relationship between burn-off length and temperature distribution in upset process has been explained and also the relationship between temperature distribution and width of heat-affected zone has been obtained. This heat input model allows us to estimate temperature distribution in friction welding, from friction pressure, rotation speed and the thermal property of base metal, even where a friction-welding machine does not have a function of torque measurement.
ISSN:0387-1096
DOI:10.7791/jhts.31.225