The complexity of generating minimum test sets for PLA's and monotone combinational circuits

The authors show that the problem of obtaining a minimum complete test set is NP-complete for monotone PLAs even when each product term of the PLA contains at most two literals. Using the ideas developed in the proof of this result, they resolve an open question due to B. Krishnamurthy and S.B. Aker...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers 1989-06, Vol.38 (6), p.865-869
Hauptverfasser: Chakravarty, S., Hunt, H.B., Ravi, S.S., Rosenkrantz, D.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors show that the problem of obtaining a minimum complete test set is NP-complete for monotone PLAs even when each product term of the PLA contains at most two literals. Using the ideas developed in the proof of this result, they resolve an open question due to B. Krishnamurthy and S.B. Akers (1984). The authors also show that given a complete test set T, the problem of obtaining a minimum test set contained in T is NP-complete even for two-level monotone circuits.< >
ISSN:0018-9340
1557-9956
DOI:10.1109/12.24296