The complexity of generating minimum test sets for PLA's and monotone combinational circuits
The authors show that the problem of obtaining a minimum complete test set is NP-complete for monotone PLAs even when each product term of the PLA contains at most two literals. Using the ideas developed in the proof of this result, they resolve an open question due to B. Krishnamurthy and S.B. Aker...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 1989-06, Vol.38 (6), p.865-869 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors show that the problem of obtaining a minimum complete test set is NP-complete for monotone PLAs even when each product term of the PLA contains at most two literals. Using the ideas developed in the proof of this result, they resolve an open question due to B. Krishnamurthy and S.B. Akers (1984). The authors also show that given a complete test set T, the problem of obtaining a minimum test set contained in T is NP-complete even for two-level monotone circuits.< > |
---|---|
ISSN: | 0018-9340 1557-9956 |
DOI: | 10.1109/12.24296 |