Spatio-temporal structuring control of a vectorial focal field

Focal field modulation has attracted a lot of interest due to its potential in many applications such as optical tweezers or laser processing, and it has recently been facilitated by spatial light modulators (SLMs) owing to their dynamic modulation abilities. However, capabilities for manipulating f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2023-05, Vol.62 (14), p.3696-3702
Hauptverfasser: Rao, Jingyuan, Long, Xian, Gao, Yuan, Yan, Wenxiang, Yuan, Zheng, Sun, Hanchao, Ren, Zhi-Cheng, Wang, Xi-Lin, Ding, Jianping, Wang, Hui-Tian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Focal field modulation has attracted a lot of interest due to its potential in many applications such as optical tweezers or laser processing, and it has recently been facilitated by spatial light modulators (SLMs) owing to their dynamic modulation abilities. However, capabilities for manipulating focal fields are limited by the space-bandwidth product of SLMs. This difficulty can be alleviated by taking advantage of the high-speed modulation ability of digital micromirror devices (DMDs), i.e., trading time for space to achieve fine focus shaping. In this paper, we propose a new, to the best of our knowledge, technique for achieving four-dimensional focal field modulation, which allows for independent manipulation of the focal field’s parameters (including amplitude, phase, and polarization) in both the space and time domains. This technique combines a DMD and a vector field synthesis system based on a 4-f system. The high-speed modulation ability of DMDs enables versatile focus patterns to be fast switchable during the exposure time of the detector, forming multiple patterns in a single recording frame. By generating different kinds of focal spots and lines at different moments during the exposure time of the detector, we can finally get complete multifocal spots and lines. Our proposed method is effective at improving the flexibility and speed of the focal field modulation, which is beneficial to applications.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.484598