Large field-of-view thermal imaging via all-silicon meta-optics

A broad range of imaging and sensing technologies in the infrared require large field-of-view (FoV) operation. To achieve this, traditional refractive systems often employ multiple elements to compensate for aberrations, which leads to excess size, weight, and cost. For many applications, including...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2023-07, Vol.62 (20), p.5467-5474
Hauptverfasser: Wirth-Singh, Anna, Fröch, Johannes E., Han, Zheyi, Huang, Luocheng, Mukherjee, Saswata, Zhou, Zhihao, Coppens, Zachary, Böhringer, Karl F., Majumdar, Arka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A broad range of imaging and sensing technologies in the infrared require large field-of-view (FoV) operation. To achieve this, traditional refractive systems often employ multiple elements to compensate for aberrations, which leads to excess size, weight, and cost. For many applications, including night vision eye-wear, air-borne surveillance, and autonomous navigation for unmanned aerial vehicles, size and weight are highly constrained. Sub-wavelength diffractive optics, also known as meta-optics, can dramatically reduce the size, weight, and cost of these imaging systems, as meta-optics are significantly thinner and lighter than traditional refractive lenses. Here, we demonstrate 80° FoV thermal imaging in the long-wavelength infrared regime (8–12 µm) using an all-silicon meta-optic with an entrance aperture and lens focal length of 1 cm.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.493555