Real-time computing for a holographic 3D display based on the sparse distribution of a 3D object and requisite Fourier spectrum

In holographic three-dimensional (3D) displays, the surface structures of 3D objects are reconstructed without their internal parts. In diffraction calculations using 3D fast Fourier transform (FFT), this sparse distribution of 3D objects can reduce the calculation time as the Fourier transform can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2023-07, Vol.62 (19), p.5276-5281
Hauptverfasser: Sando, Yusuke, Goto, Yutaro, Barada, Daisuke, Yatagai, Toyohiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In holographic three-dimensional (3D) displays, the surface structures of 3D objects are reconstructed without their internal parts. In diffraction calculations using 3D fast Fourier transform (FFT), this sparse distribution of 3D objects can reduce the calculation time as the Fourier transform can be analytically solved in the depth direction and the 3D FFT can be resolved into multiple two-dimensional (2D) FFTs. Moreover, the Fourier spectrum required for hologram generation is not the entire 3D spectrum but a partial 2D spectrum located on the hemispherical surface. This sparsity of the required Fourier spectrum also reduces the number of 2D FFTs and improves the acceleration. In this study, a fast calculation algorithm based on two sparsities is derived theoretically and explained in detail. Our proposed algorithm demonstrated a 24-times acceleration improvement compared with a conventional algorithm and realized real-time hologram computing at a rate of 170 Hz.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.491807