Monolithic 591-nm laser with cooperative multiphonon-coupling and nonlinear frequency-doubling
Stable and miniaturized orange lasers at 591 nm are in urgent demand for ophthalmology and dermatological treatment. However, at present, traditional dye lasers and nonlinear sum-frequency lasers are limited by their complex setup and high cost, whereas semiconductor laser diodes (LDs) emitting in t...
Gespeichert in:
Veröffentlicht in: | Optics letters 2023-09, Vol.48 (18), p.4913 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stable and miniaturized orange lasers at 591 nm are in urgent demand for ophthalmology and dermatological treatment. However, at present, traditional dye lasers and nonlinear sum-frequency lasers are limited by their complex setup and high cost, whereas semiconductor laser diodes (LDs) emitting in the yellow-orange range suffer from low output power. Here, we propose a new, to the best of our knowledge, route to create self-frequency-doubling (SFD) orange laser with a combination of multiphonon-assisted lasing and nonlinear frequency-doubling in one crystal. Using Yb
3+
-doped YCa
4
O(BO
3
)
3
(Yb:YCOB) crystal, we first realize a widely tunable laser beyond the fluorescence spectrum in the wavelength range of 1175–1248 nm. Then, by selecting the laser polarization and crystal angle to satisfy phase-matching conditions, we obtained a directly diode-pumped orange laser at 591.8 nm with 3.07-W output power and an optical-to-optical conversion efficiency of 13%. This work represents a new step forward for portable high-power solid-state orange lasers and provides an intriguing platform for electron–phonon coupled lasing. |
---|---|
ISSN: | 0146-9592 1539-4794 1539-4794 |
DOI: | 10.1364/OL.501045 |