The one-inclusion graph algorithm is near-optimal for the prediction model of learning
Haussler, Littlestone and Warmuth (1994) described a general-purpose algorithm for learning according to the prediction model, and proved an upper bound on the probability that their algorithm makes a mistake in terms of the number of examples seen and the Vapnik-Chervonenkis (VC) dimension of the c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2001-03, Vol.47 (3), p.1257-1261 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Haussler, Littlestone and Warmuth (1994) described a general-purpose algorithm for learning according to the prediction model, and proved an upper bound on the probability that their algorithm makes a mistake in terms of the number of examples seen and the Vapnik-Chervonenkis (VC) dimension of the concept class being learned. We show that their bound is within a factor of 1+o(1) of the best possible such bound for any algorithm. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/18.915700 |